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Abstract—Backdoor attacks have raised significant concerns
in machine learning (ML) systems. Mainstream ML back-
door attacks typically involve either poisoning the victim’s
training samples or pre-training poisoned models for use by
victim users. Meanwhile, recent advances in hardware-based
threats reveal that ML model integrity at inference-time can
be seriously tampered by inducing transient faults in model
weights. However, the adversarial impacts of such hardware
fault attacks at training time have not been well understood.

In this paper, we present DeepVenom, the first end-to-
end hardware-based DNN backdoor attack during victim
model training. Particularly, DeepVenom can insert a targeted
backdoor persistently at the victim model fine-tuning runtime
through transient faults in model weight memory (via rowham-
mer). DeepVenom manifests in two main steps: i) an offline
step that identifies weight perturbation transferable to the
victim model using an ensemble-based local model bit search
algorithm, and ii) an online stage that integrates advanced
system-level techniques to efficiently massage weight tensors
for precise rowhammer-based bit flips. DeepVenom further
employs a novel iterative backdoor boosting mechanism that
performs multiple rounds of weight perturbations to stabilize
the backdoor. We implement an end-to-end DeepVenom attack
in real systems with DDR3/DDR4 memories, and evaluate
it using state-of-the-art Convolutional Neural Network and
Vision Transformer models. The results show that DeepVenom
can effectively generate backdoors in victim’s fine-tuned mod-
els with upto 99.8% attack success rate (97.8% on average)
using as few as 11 total weight bit flips (maximum 49). The
evaluation further demonstrates that DeepVenom is successful
under varying victim fine-tuning hyperparameter settings, and
is highly robust against catastrophic forgetting. Our work
highlights the practicality of training-time backdoors through
hardware-based weight perturbation, which represents a new
dimension in adversarial machine learning.

1. Introduction

Machine Learning (ML) is rapidly transforming our
daily life [1]. The tremendous advances of deep neural net-
works (DNN) have enabled its adoption a wide range of ap-
plication domains, including image processing, autonomous
driving and medical diagnostics [2], [3]. As many of these
techniques are applied in critical systems that aid human

decision-making, ensuring the security and trustworthiness
of ML-integrated computing systems is critical. Recent stud-
ies reveal the integrity of ML models can be tampered either
externally (e.g., through input perturbations [4], [5], [6]) or
internally (e.g., via weight perturbations [7], [8], [9], [10],
[11]), leading to compromised ML model behavior during
inference.

Model backdoors represent one of the most concerning
classes of integrity tampering attacks in DNNs [8], [12],
[13]. Trojaned ML models predict normal inputs correctly
while perform maliciously (e.g., with attacker-desired clas-
sification) under inputs perturbed with certain trigger pat-
terns, which makes such attacks extremely stealthy and
challenging to eradicate. State-of-the-art DNN backdoor pri-
marily falls into the following categories: i) data poisoning
attacks [14], [15] where poisoned samples are fed into
victim’s training process for trojaning; ii) retraining-based
trojan attacks in which the adversary locally trains and
publishes a model with backdoor, which is later adopted
by a victim [8], [16]. These attacks either require direct
tampering of the victim’s training samples or depend on
model users to obtain well-trained/pre-trained models from
unverified sources. Hence, they are ineffective when both
data and models have been verified in advance.

Prior studies have revealed that commercial-off-the-shelf
hardware (e.g., logic and memory components) is vulnerable
to fault attacks [17], [18]. This threat disturbingly permits
internal tampering of ML models at runtime, jeopardizing
the security of ML systems even when dataset and model
sources are trusted. For instance, recent works demonstrate
that through inducing bit flips in model weight parameters
(i.e., using rowhammer), attackers can manage to manipu-
late the inference of targeted DNN models with backdoor
insertions [10], [11]. However, existing DNN fault attacks
primarily manifest at inference time. One main limitation
of inference-time attacks is that the backdoor functionality
is only temporary since those hardware-induced faults are
inherently transient. In essence, such exploitation is not
permanently implanted into the victim’s model. For instance,
reloading the static weights from the backing storage can an-
nul the weight perturbations in memories [19]. One critical
question to raise in our community is: will it be possible
to trojan ML models at training time through hardware
transient faults? Specifically, we consider the novel attack
scenario (shown in Figure 1) where the adversary targets vic-
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Figure 1: DeepVenom attack scenario.

tim’s training runtime that involves fine-tuning a publicly-
obtained pre-trained model (PTM). Note that fine-tuning
from PTMs has become a widely popular approach nowa-
days for fast ML service deployment [20], [21], [22]. The
attacker perturbs a small amount of victim model weights
using transient faults in memory during its fine-tuning pro-
cess, which aims to eventually insert a backdoor in victim’s
fine-tuned model. Different from inference-time exploits,
training-time fault attacks have the potential promise of
transforming the effect of transient weight perturbations to
persistent backdoors if the weight learning/updating process
is properly exploited.

Although training-time DNN backdoor is appealing from
the adversary’s perspective, our initial investigation unveils
several fundamental challenges for such attacks. Firstly,
the training process essentially renders fault injections in
ML models at this stage a blackbox exploit due to the
unknown and periodic changing of model weights. There-
fore, the gradient-based methods (i.e., using label loss)
under the whitebox setting for fault localization used in
prior inference-time DNN attacks (e.g., [11], [23]) are not
applicable. Secondly, with the unawareness of the victim’s
model internals during training, one might consider the
possibility of generating a set of bit flips in a substitute
model (whitebox) and applying them to the victim. How-
ever, while a large body of prior works has demonstrated
successful transfer of input perturbations across models (i.e.,
adversarial input [4], [5], [6], [13]), no existing works have
investigated the transferability of weight perturbations. It
is an open problem whether perturbations of weights can
transfer at all. Last but not least, it is well known that
ML training exhibits the phenomenon of catastrophic for-
getting [24] where certain learned information (via perturbed
weights in this case) can be forgotten as new information is
learned (e.g., the regular training task).

In this paper, we answer the aforementioned question
and overcome the associated challenges by presenting the
first end-to-end hardware fault-based DNN backdoor at-
tack during training time–DeepVenom. At a high level,
DeepVenom is a multi-round attack that identifies bit flips
in model weights during local training (offline stage) and
subsequently applies the fault injections to the bits (i.e.,
transfers the weight perturbation) of the victim’s model
during fine-tuning (online stage). Specifically, in the offline

stage, the attacker constructs a local model that resembles
the fine-tuning process of the victim. DeepVenom generates
a transferable input trigger and bit flip group based on the
local model. Targeting a snapshot of the local model at cer-
tain time, the proposed algorithm aligns signature neurons
in the intermediate representation with those of the clean
inputs from the targeted class, using weight bit flips. To
further enhance the transferability of the generated trigger
and bit flip group, DeepVenom integrates a novel technique
utilizing multiple local models in an ensemble fashion that 1)
generates advanced input trigger that can activate individual
set of signature neurons on different instances of the fine-
tuned models and 2) leverages a fused bit search loss among
local models to locate highly invariant bits in model parame-
ters for enhanced weight perturbation transferability. Lastly,
to mitigate catastrophic forgetting, DeepVenom utilizes an
iterative backdoor boosting technique that identifies and
applies multiple bit flip groups at different time points for
backdoor stabilization. In the online stage, DeepVenom
integrates novel rowhammer-based techniques that can ef-
ficiently massage ML model weight tensors for rowhammer
bit flips in real systems.

We evaluate our attack on four representative DNN
model architectures (VGG16, ResNet18/50, and ViT) and
five distinct datasets (GTSRB, CIFAR10, SVHN, EuroSat,
and CIFAR100). The experimental results demonstrate that
DeepVenom can successfully insert backdoors into the vic-
tim model with a high attack success rate (97.8% on aver-
age) and negligible accuracy drops (0.1% on average) for
normal inputs. DeepVenom can achieve stable backdoors
using rowhammer, requiring as few as 11 flips (maximum
49). Moreover, our evaluation shows that the DeepVenom
backdoor persists in the victim model even when local and
victim fine-tuning hyper-parameters differ (e.g., optimizer
and learning rate). Additionally, our results indicate that
iterative backdoor boosting is highly effective in defend-
ing the attack against catastrophic forgetting: the inserted
backdoor remains stable after further extended fine-tuning
by the victim. The following are our main contributions:

• We perform the first study to investigate the feasibility
of trojaning DNN models through hardware-based fault
attacks in training stage under a transfer learning sce-
nario and identify unique challenges for such attacks.

• We explore factors that impact the transferability of
weight perturbations and propose a novel algorithm
that generates input trigger and bit flips based on local
training, and further optimizes their transferability to
the victim using an ensemble approach. By taking the
advantage of runtime exploitation (with rowhammer),
the algorithm performs iterative backdoor boosting that
carries out multi-round fault injections to induce a
highly stable backdoor.

• We build a prototype of DeepVenom and implement
the end-to-end attack in real systems with both DDR3
and DDR4 memories. By identifying the memory man-
agement mechanisms in state-of-the-art ML platforms
(i.e., PyTorch), DeepVenom employs a novel memory



massaging technique tailored to ML training to induce
deterministic bit flips in global weight tensors. The re-
sults show DeepVenom is highly successful in trojaning
the victim model with high ASRs (up to 99.8%) and
only 11 to 49 bit flips throughout victim’s fine-tuning.

• Our analysis shows that the iterative backdoor boost-
ing is particularly effective in retaining the backdoor
function even when extended fine-tuning is performed.

• Finally, we discuss the applicability of existing back-
door defenses to DeepVenom and also present a po-
tential mitigation and its effectiveness. Our work high-
lights the importance of understanding model integrity
threat with respect to hardware vulnerabilities in the
machine learning training stage.

2. Background and Related Works

2.1. Pre-trained Models and Fine Tuning

Training production-level ML models (especially for
DNNs) typically not only requires substantial computing
resources but may also need access to massive training
dataset, which can be prohibitively expensive [25], [26],
[27]. Hence, it becomes a common practice for users to
leverage pre-trained models (PTM) downloaded from public
sources (e.g., ModelZoo and HuggingFace [28], [29]). Gen-
erally, there are two PTM use cases: scenario 1, deploying
the publicly-obtained PTMs directly for an ML service (i.e.,
inference) [8], [16], and scenario 2, fine-tune the model (i.e.,
transfer learning) for certain downstream task [30], [31],
[32], [33], [34]. Due to the common need for ML service
customization, fine-tuning PTM has become a widely pop-
ular approach for service providers [20]. Specifically, in the
fine-tuning process, the last layer(s) of the model are first
replaced with new ones tailored to the output classes of the
downstream task. Depending on the difference between the
upstream/downstream tasks and the size of downstream task
dataset, updates of weights can be performed either in a lim-
ited fashion (e.g., only modifying weights in the last a few
layers and keeping the rest unchanged) or onto all weights
during fine-tuning. It has been shown that fine-tuning all
layers can help improve the generality and render better
performance in transfer learning [35]. Figure 2 illustrates the
high-level procedure of fine-tuning from pre-trained models.

2.2. Backdoor Attacks

Backdoor attacks aim to insert stealthy trojan into an
ML model such that it infers normally on clean inputs but
generates unexpected outputs when certain pre-determined
trigger is applied to an input [8]. Attackers can manipulate
the infected model to behave maliciously in different ways
including: 1) untargeted backdoors that induce misclassi-
fication to an arbitrary class given a triggered input [33],
[34], [36], and 2) targeted backdoors where any input with
the trigger is predicted to an attacker-desired class [8], [14],
[16]. Traditionally, DNN backdoor attacks are performed
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Figure 2: Transfer learning with pre-trained models.

through either tampering the training data [8], [14] or the
training process [16], [32]. In data poisoning attacks, the
victim’s training dataset is maliciously polluted by samples
with embedded trigger patterns [14], [37]. Moreover, at-
tackers can backdoor a model by controlling/compromising
the training procedure. In particular, attackers can publish a
locally-trained model (i.e., malicious PTM) to be used by the
victim users [7], [8], [16]. Recent works also demonstrated
the possibility of hijacking the training function at runtime
for backdoor insertion [38]).

With the growing demand of utilizing PTMs for building
downstream tasks, recent ML security studies have inves-
tigated DNN backdoors in the context of transfer learn-
ing [30], [31], [32], [33], [34], [36], [39]. In such scenar-
ios, the attacker maliciously constructs (via local training)
a PTM with a backdoor not aimed to target the model
itself, but to manifest in the fine-tuned model used by a
victim. For instance, prior works [30], [31] have shown
that targeted backdoors can be realized by trojaning a pre-
trained model (through re-training) to force feature map
similarity between triggered inputs and the clean inputs
for target class. However, these attacks are successful only
when fine-tuning is limited to the last layer(s) [30] (See
Section 2.1). Achieving backdoors after fine-tuning of all
weights is very challenging [37], [40], [41], [42], [43].
This is because the model is put to only learn the new
feature corresponding to the downstream tasks since only
the downstream dataset is fed into the training pipeline. As
such, the backdoor functionality inserted in the PTM at its
initial state will be gradually weakened due to the widely-
known effect of catastrophic forgetting [24], [44], [45],
[46]. Several recent studies explore ways to mitigate the
forgetting effect by modeling and alleviating the weight up-
date conflicts between backdoor and downstream task [32],
[39]. While these approaches demonstrate backdoor stability
enhancement in certain settings, the effectiveness of these
attacks is significantly limited when there is a diversion
between the local and victim model configurations (e.g.,
learning rates).

It is worth noting that the aforementioned backdoor
attacks either rely on victim users to access impacted
dataset/pre-trained models or depend on the training routine
to be hijacked by adversaries. Hence, such attacks cannot
manifest in use cases where users obtain PTMs from trusted
sources and utilize audited or untampered data [38].



2.3. Hardware-based Attacks on ML Models

Hardware-based Faults Attacks. It has been known that
computing hardware is vulnerable to fault injections. Hard-
ware faults can be injected into a variety of components,
including on-chip logic [47], [48], SRAMs [49] and off-
chip memory [18]. Particularly, recent advances have shown
that commercial-off-the-shelf DRAM devices, which are the
building block for system main memory, are vulnerable to
bit flip-based fault injection (known as rowhammer [18],
[19], [50], [51], [52]). Specifically, it has been observed
that activations of one DRAM row accelerates the charge
leakage of DRAM cells in the physically-adjacent rows [18].
If such disturbance is frequent enough, it can introduce
sufficient loss of charge in neighboring cells, leading to
bit flips. Rowhammer is extremely worrisome as it allows
deterministic fault injection to program memories, which
can be performed remotely with an attacker-controlled un-
privileged process. Recent developments have shown suc-
cessful exploitation of rowhammer in a variety of DRAM
technologies, including DDR3 [18], [19], [50], [51] and
DDR4 [19], [52] memories. More alarmingly, it has been
revealed that with further scaling of technology nodes, future
DRAMs are expected to become increasingly susceptible
to rowhammer [53]. While various studies have proposed
techniques to mitigate such a vulnerability [54], [55], [56],
[57], they either do not fully eliminate bit flips or can incur
non-trivial hardware/runtime cost.
ML Model Tampering with Bit Flips. The capability of
precise and fine-grained fault injection with rowhammer
opens a new dimension of adversarial machine learning.
Essentially, rowhammer enables practical internal tampering
of DNN models through weight perturbations in contrast
to input perturbations (i.e., adversarial examples [4], [13],
[58]). In fact, recent studies have shown that by inducing
only a few bits among millions of weight parameters, at-
tackers can drastically degrade the inference accuracy in
state-of-the-art DNN models [10], [19], [59], [60], [61],
[62]. More recent advances have revealed the possibility of
embedding backdoors by flipping bits in the static weights
of models [11], [23], [61], [63], [64], [65]. For example, the
attack in [23] identifies sensitive neurons to target class and
locates bit flips in the corresponding weights of the last layer
to divert the prediction of inputs with trigger to the desired
label. Tol et al. [63] proposes to co-optimize trigger and bit
flips to directly associate the triggered inputs with the target
class. While these works showcase the practicality of model
tampering through bit flips in memory, we note that they
have several key limitations. Firstly, since rowhammer only
causes soft errors in DRAM devices [18], the induced fault
injections are inherently transient. Therefore, the inserted
backdoor is considered only temporary and cannot persist
across model weight reloads or model migration from one
machine to another. Secondly, such attacks typically assume
white-box settings where weights are static and precisely
known to the attacker, limiting its applicability to model
training where weights are dynamic and the exact values
are uncertain at runtime.

3. Threat Model

In this paper, we investigate a new attack direction:
backdoor a victim model during its training/fine-tuning
through transient weight perturbation via rowhammer. Our
attack targets a common use case where a victim user
adopts transfer learning and fine-tunes a pre-trained model
free of backdoors (e.g., from trusted source) using clean
or sanitized downstream dataset. We assume that the pre-
trained model is known by the attacker. Note that such
assumption is reasonable due to the popularity of using
publicly-accessible PTMs to build ML service [20], [21].
Without loss of generality, our main discussion assumes that
for fine-tuning, the last layer(s) of the PTM is replaced with
a new layer for the downstream task. Note that our attack can
also be applicable in case multiple layers are used for the
new classifier. We assume the victim fine-tunes all layers
of the PTM with weights in floating points, which is the
most general fine-tuning strategy. The adversary manages to
co-reside on the same machine as the victim user (e.g., in
the cloud). Moreover, the attack process is unprivileged and
has no control over the victim’s fine-tuning operations and
hyper-parameters (e.g., training duration and learning rate).
The adversary intends to eventually leave a persistent and
targeted backdoor in the victim’s fine-tuned downstream
model. To demonstrate an end-to-end attack, we mainly
target victim fine-tuning on CPUs where model weights are
stored in system main memory.

We assume the attacker is aware of the victim’s down-
stream task and has access to a very small publicly available
portion of the victim’s dataset. Note that our assumption
of access to limited dataset is less stringent compared to
prior re-training based targeted backdoors that assumes full
dataset access [32], [39]. Furthermore, to inject faults into
weights at runtime, we assume the attacker can monitor and
estimate victim’s fine-tuning progress at a coarse-granularity
(e.g., detecting the start of a fine-tuning iteration), which has
been shown to be plausible using microarchitectural side
channels (e.g., cache attacks) in recent studies [66], [67],
[68]. Such information is used in the attack process to induce
weight bit flips at certain times of the fine-tuning. We note
that a precise tracking of the ongoing epochs/iterations is
not a requirement for our attack.

4. DeepVenom Overview

In this section, we present an overview of DeepVenom
that aims to embed backdoors by injecting bit flips to
weights at the runtime of fine-tuning, which can be later
activated at the inference time of the fine-tuned model.
Attack Overview. Figure 3 shows the overview of our
proposed attack. At a high level, DeepVenom manifests as
a multi-round attack framework with an offline stage (for
trigger and bit flips generation) and an online stage (for
rowhammer-based fault injection). The offline stage involves
the attacker’s local fine-tuning of the public PTM (to be
used by the victim). At certain time of the local fine-tuning,
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Figure 3: Overview of the proposed DeepVenom attack framework.

DeepVenom identifies a group of weight bits to flip, called a
bit flip group (BFG) together with the generation of an input
trigger (δ) that are independent of the model’s last layer(s)
(Section 5.1). BFG and δ are further optimized through an
ensemble method, enhancing both weight and input pertur-
bation transferability for the backdoor (Section 5.2). Weight
bits in BFG are inverted in the snapshot local model (fully
controlled by the attacker), and the immediate backdoor
effectiveness is assessed using δ. To tackle catastrophic
forgetting, DeepVenom adopts iterative backdoor boosting
that accumulates multiple rounds of the above attack at
different fine-tuning times until the backdoor feature in the
local model is stabilized (Section 5.3). Specifically, Deep-
Venom identifies (δi, BFGi) at local fine-tuning time tLi for
attack round i (i ∈ [1, n]). In the online stage, DeepVenom
leverages rowhammer to correspondingly perform the multi-
round attack during the victim’s model fine-tuning, each
flipping bits in one BFG (i.e., BFGi for round i) at the
remote victim’s fine-tuning time tRi . This eventually inserts
a persistent backdoor in the victim’s model (Section 6).

5. DeepVenom Offline Stage

This section describes the offline attack procedure that
generates transferable input trigger and bit flip groups in
order to backdoor victim’s fine-tuning at runtime.

5.1. Attacking a Local Fine-tuning Snapshot

In the offline stage, the attacker first downloads the
public clean PTM M with l layers. To prepare for local
fine-tuning, the attacker replaces the last layer of M with a
new one (La) based on the victim’s task to generate a new
initial model {Ma}0, with which the attacker starts the local
fine-tuning. At certain fine-tuning time t with the snapshot
of attacker’s local model {Ma}t, the attacker manages to
derive a trigger pattern (δ) and BFG such that {Ma}t with
flipped bits in BFG will embed a backdoor to be activated
by inputs with trigger (δ). Note that at the online stage, the
victim will replace the last layer of M with a randomly
initialized task-specific layer Lv (i.e., weights unknown to
the attacker) to configure her own model {Mv}0 for fine-
tuning. The key objective is to ensure that the backdoor in
the local snapshot model ({Ma}t) can: ➊ transfer to the
victim’s model when BFG is applied to victim’s weights
amid fine-tuning, and ➋ be able to persist to the end (i.e, the

final fine-tuned model ({Mv}end). We discuss the setting of
attack times in local and victim fine-tuning in Section 5.3.

Existing bit flip-based backdoors manifest at inference
time and are highly dependent on weights of the last layer(s)
(i.e., classifier) [10], [11], [23], [63], [64]. This is because
they either rely on directly flipping bits in the classifier [23]
or involve weights of the classifier in the backdoor loss
computation [11]. While such algorithms are effective for
while-box DNN models, the nature of model training deter-
mines that the exact weight values in the victim’s classifier
layer (and hence the whole model) during fine-tuning are
not known to the attacker, albeit {Ma

1:l−1}0 and {Mv
1:l−1}0

being the same. Therefore, triggers and bit flips derived in
prior works would not effectively transfer the backdoor to
the victim’s model in our attack scenario (See Appendix A
for detailed analysis). In this work, we propose an algorithm
that generates transferable weight perturbation via bit flips.

5.1.1. Signature Neuron Selection (SNS). Without know-
ing the classifier layer, an intuitive approach is to connect
the triggered input to the output feature (Φ) of {Ma

l−1}t
(i.e., intermediate representation right before the classifier)
for the target class ξ, similar to the mechanisms in prior re-
training based PTM backdoor [30], [31], [39] (Section 2.2).
However, given the limited impact of weight perturbation at
bit level, it is infeasible to control the entire feature map via
flipping a reasonable amount of weight bits. To tackle this
challenge, our algorithm selects a few signature neurons
in Φ that best represent the feature map for a specific
class. The main idea is to enforce high similarity at the
signature neuron-level between triggered inputs and clean
inputs for class ξ in the local model. Since the local and
victim model are under fine-tuning from the same initial
state M1:l−1, the feature of an input in the local model is
highly likely to resemble that of the victim’s model. Hence,
through activating the similar signature neurons in the victim
model, triggered inputs will be classified as target class ξ by
the subsequent classifier, independent of its weight values.
Such mechanism has the promise of transfer the backdoor
in transfer learning.

Generally, neurons with large values are more represen-
tative than smaller ones [16]. Accordingly, SNS aims to
identify neuron locations with relatively-large values for the
target class ξ. In particular, we compute Φ(x) for each input
x in dataset D. The average feature map Φξ belonging to
inputs from class ξ is calculated by averaging all the feature



maps. Using the same method, the average feature map Φξ̄

is then generated for the inputs in classes other than ξ. To
select the neuron locations with relatively large value, the
attacker computes the element-wise difference of Φξ and
Φξ̄ to derive the relative feature map Φr. Finally, p neuron
locations with the top neuron values are identified in Φr,
denoted as Γ. Essentially, Γ points to the signature neurons
for clean inputs belonging in target class ξ.

5.1.2. Transferable Trigger Generation (TTG). With the
identified signature neurons, this step generates a trigger
optimized for enhancing the association between triggered
inputs and the signature neurons. We consider a trigger
pattern δ as a patch stamped onto a corner of input samples.
Specifically, we define a binary matrix mask τ to denote the
shape and size of the pre-determined trigger. An element-
wise multiplication x ◦ (1 − τ ) is conducted to delineate
the region of the clean sample. The triggered input can be
defined as:

x∗ = Ψ(x, τ , δ)

Ψ(x, τ , δ) = x ◦ (1− τ ) + δ ◦ τ (1)

where function Ψ() is used to synthesize inputs with trigger,
x is the clean input. The trigger generation can be formally
expressed as an optimization problem:

ℓδ = L
(
f(x∗; {W }l−1

i=1)Γ, c
)

δ = argmin
δ

(ℓδ)
(2)

where {W }l−1
i=1 is the snapshot weights of substitute model

{Ma}t from 1 to l − 1 layers. For a given triggered
input x∗, we first calculate the feature map of the sample
via forward propagation. f(x∗; {W }l−1

i=1)Γ denotes neuron
values at locations in Γ, and c is the maximum value of
the signature neurons in Φξ

Γ. We use the Projected Gradient
Descent algorithm [58] to derive the trigger to optimize ℓδ .

5.1.3. Transferable Bit Flip Identification (TBFI). Once
the trigger is obtained, the next step is to generate the
BFG from the local model ({Ma}t). DeepVenom aims to
perform the minimum number of bit flips for transferring
the backdoor. To do so, TBFI finds one vulnerable weight
bit at a time with the following bit flip loss function:

ℓB = L
(
f(x∗; {B}l−1

i=1)Γ, c
)

︸ ︷︷ ︸
backdoor loss: ℓp

+λ · L
(
f(x; {B}), y

)︸ ︷︷ ︸
downstream task loss: ℓc

B̂ = argmin
B

ℓB ; Dist(B̂,B) = 1

(3)

where the ℓp term is the poisoning loss for the backdoor task,
and ℓc denotes the clean loss for downstream task. y is the
ground truth label for benign input x. Moreover, B is the
binary weight representation of {Ma}t, and B̂ is the model
with one weight bit flipped. Dist() measures the number
of different bits between the two models. Essentially, with
the bit flip, ℓp further optimizes the neuron values of x∗ at
location Γ while ℓc maintains the normal accuracy.

Identifying BFG. TBFI searches one weight bit iteratively
in the local model. Specifically, the algorithm first computes
ℓB given trigger δ and dataset D, then back-propagates the
loss to get the weight-level gradients ∇Bℓ. Since weight
perturbation occurs at bit level with rowhammer, an addi-
tional mechanism is needed to rank the contribution to ℓB
if a weight bit is flipped. For a weight w with gradient ∇w
and weight change ∆w (caused by flipping certain bit in
w), we quantify the influence of the flip using the following
score: ∆w ·∇w. TBFI considers weight bit candidates with
the top q highest scores in each layer, which results in
q × l total candidate bits. TBFI computes the loss value
ℓB after flipping each candidate bit individually. The algo-
rithm then selects the most influential bit that induces the
minimum loss if flipped. At the end of this iteration, the
identified bit flip f is applied in the local model (via direct
modification) and appended to BFG. f includes both the
global offset of the weight bit as well as the flip direction
(e.g., ‘0’→ ‘1’ or ‘1’→ ‘0’). TBFI performs this search for
multiple iterations until the local attack success rate (ASR)
is higher than a threshold asrT , forming a bit flip group
BFG : {fi | i = 1, 2, . . . , k}.
Selecting Highly-invariant and Suitable Candidate Bit Off-
sets. Compared to prior transferability studies on input per-
turbation in adversarial examples [4], [5], [6], [13], transfer
of weight perturbation from local to victim model is more
challenging. This is because successful transfer of weight
perturbations needs to satisfy two conditions: 1 the weight
bits in BFG should be flippable in the victim model; 2
the effect of bit flips (i.e., the backdoor feature) should
also transfer. We create two metrics: flipping success rate
(R) and effect transferability (E) for weight perturbation
transferability, defined as the following:

R =
1

k
Dist(Bk

v ,Bv)

E = P[f(x∗;Bk
v ) = ξ]

(4)

where Bv is the binary representation of the snapshot
weights of victim’s model {Mv}t′ (assuming runtime attack
time at t′), and Bk

v represents the binary weights with k bit
flips attempted according to the BFG. P is the percentage
of triggered inputs x∗ being classified to the target class
after applying the weight perturbations to B. Note that vic-
tim’s model parameters are periodically updated during fine-
tuning and will certainly differ from local model {Ma}t.
Hence, a flip fi may not be successfully applied to Bv.
Particularly, consider a flip fi that specifies to flip a weight
bit bi with a binary value ‘1’ at bit offset o with the intended
flip direction (‘1’→‘0’). However, at victim’s runtime time
t′, if bi is updated to ‘0’ by victim’s regular fine-tuning, the
flipping would not be successful and the backdoor effect
would not transfer (i.e., failure of R transferability).

To address the transferability issue, DeepVenom needs to
identify weight bits that remain highly-invariant throughout
the fine-tuning process. That is, bi (i ∈ [1, k]) should remain
constant across different fine-tuning instances starting from
the same PTM. It is worth noting that training/fine-tuning is
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typically performed on floating point numbers. Fortunately,
our characterization study on weight changes indicate that
while PTM fine-tuning updates all weight parameters, the
magnitude of changes are very small. As a result, bits at
certain offsets of the exponent segment in weight parameters
are largely unaltered after fine-tuning. Note that not all
exponent bits are suitable for flipping due to the considerable
dynamic value range for floating points. We formulate FP32
weight change due to a flip in certain offset in the following:

∆w = (Sd
o − 1) · w (5)

where w is the original weight value. Sd
o denotes the

scaling factor for w when flipping occurs at offset o in
an FP32 parameter with flip direction d (0: ‘0’→‘1’ or
1: ‘1’→‘0’). Note that for fixed o and d, Sd

o is a unique
value regardless of w. We observe that flipping high order
exponent weight bit from ‘0’→‘1’ introduces significant
weight change (e.g., S0

30 = 2128), which can completely
malfunction the model (e.g., failure of regular training). Our
investigation shows that considering bit invariance and rea-
sonable weight change, the 1st, 2nd and 3rd least significant
bits of weight exponents are suitable candidates for locating
transferable flips (See Appendix B for more discussion).
Therefore, TBFI empirically limits the bit search and rank-
ing within the weight bits at these offsets.

5.2. Enhancing Transferability with Ensemble
Models

The basic DeepVenom in Section 5.1 leverages a single
substitute model for transferable trigger and BFG identifica-
tion. However, relying solely on one local model can be sub-
optimal for weight perturbation transferability. Specifically,
we observe that during regular fine-tuning, feature map Φξ

sometimes exhibits non-trivial and uncertain pattern shift
among distinctive downstream model instances, leading to
difference in signature neuron locations. Such discrepancies

can undermine the transferability of weight perturbation par-
ticularly for E (Section 5.1). Recent studies on adversarial
examples [69], [70], [71] indicate transferability of input
perturbation can be enhanced with the use of multiple local
models. Motivated by such observation, we further improve
DeepVenom with a novel design of ensemble models tai-
lored for improving trigger and BFG transferability.

Specifically, DeepVenom constructs u substitute models
that start fine-tuning in parallel and progress in synchroniza-
tion. Each substitute model is independently initiated with a
random replaced last layer. At the local time t, u snapshots
of substitute models are obtained. Under the ensemble mode,
one way to adapt Signature Neuron Selection is to utilize
shared Signature Neurons among all u models. However,
such approach may negatively affect the representativeness
of the selected neurons due to variations among Γi for
i ∈ [1 : u]. Therefore, we choose to maintain distinct
signature neurons Γ for each local model. To generate
the ensemble trigger, DeepVenom leverages the ensemble
trigger loss defined in the following:

δe = argmin
δ

 1

u

u∑
i=1

ℓδi(f(x
∗; {Wi}l−1

j=1)Γi
, ci)

 (6)

Figure 4a illustrates the ensemble trigger generation
procedure. Specifically, the algorithm computes trigger loss
ℓδi using a per-model ci for each model Wi. It then gets
the ensemble trigger loss ℓeδ by averaging among all ℓδi ,
which is used to derive the corresponding ensemble gradient
∇δℓ

e. Finally, the ensemble trigger δe is computed based
on ∇δℓ

e. The derived δe is expected to activate individual
set of signature neurons on different local model instances
for the target class. For ensemble bit search, the algorithm
calculates the ensemble bit flip loss ℓeB with the the average
of ℓBi

for i ∈ [1 : u]:

ℓeB =
1

u

u∑
i=1

ℓBi(x,x
∗,Bi, ci, y) (7)

The fused gradient ∇Bℓe (w.r.t. weights) is then gen-
erated using ℓeB . Afterwards, the top q weight candidates
per layer are identified by ranking ∆w · ∇we at each layer
where ∇we is retrieved from ∇Bℓe. A bit that can be
flipped among all local models and introduce the maxi-
mum ensemble bit flip loss drop is selected. The flip is
then applied on the corresponding weight parameter across
models (with weight values not necessarily the same). An
individual ASR (asri) is evaluated under inputs with trigger
δe for each local model to get the average ASR (asre). The
same iterative search process as in the single model TBFI
(Section 5.1.3) is performed until asre exceeds the threshold
asrT . Figure 4b illustrates the process of ensemble bit
search process. Finally, Algorithm 1 describes the detailed
steps of our ensemble method. The ensemble method selects
weight bit that can reliably contribute to the backdoor func-
tion universally across multiple local instances, thus having
the promise of being more robust against the uncertainty
in victim’s fine-tuning and improving the E transferability.



Algorithm 1: Snapshot attack on ensemble models
Input : Dataset D, u local snapshot models

{W1,W2, . . . Wu} with binary weights
{B1,B2, . . . Bu}, threshold asrT

Output: Trigger δe and bit flip group BFG
// Signature neuron selection
Get signature neuron locations Γi and target signature

neuron values ci for each local model Wi

// Ensemble trigger optimization
Get ensemble trigger δe based on Eq. 6
// Ensemble bit search
while asre ≤ asrT do

Get ensemble bit flip loss ℓeB using Eq. 7
Get ensemble gradients ∇Bℓ

e = 1
u

∑u
i=1∇Biℓ

Search top q candidate bits for each layer based on
∆w · ∇we

Compute ℓeB for each candidate bit flipping
Identify a flip f flippable to all models with the

largest ℓeB drop
Apply f to u models and append f to BFG
Evaluate ASR with δe and D on u models
Compute the average of u ASRs as asre

return δe,BFG

Note that Algorithm 1 naturally falls back to a single model
attack if only one local model is used.

5.3. Iterative Backdoor Boosting

In the transfer learning attack scenario, the adversary
cannot control the victim’s fine-tuning process (e.g., training
end time). Although one BFG may raise the immediate ASR
of the victim model at a high level, the victim’s subsequent
fine-tuning iterations can gradually dilute the backdoor ef-
fectiveness. Essentially, the weight changes due to bit flips
can be considered as a short burst of training for the back-
door task, which is subject to the common phenomenon of
catastrophic forgetting [24]. Fortunately, DeepVenom, being
a runtime attack, offers a unique advantage over existing
training-based backdoor attacks [8], [16], [32], [33], [34],
[36], [39]. That is, DeepVenom can manifest multiple rounds
of weight perturbation during victim runtime in order to
enhance the backdoor feature.

DeepVenom integrates an Iterative Backdoor Boosting
(IBB) mechanism that accumulates multiple BFGs gener-
ated from snapshot attacks launched at different fine-tuning
times. Notably, in DeepVenom, the current training iteration
is used to represent time during fine-tuning. In the offline
stage, the attack initializes at a preset time t1 (i.e., local fine-
tuning has passed t1−1 iterations). Starting from t1, Deep-
Venom evaluates the local attack after every v fine-tuning
iterations to check if the local ASR (or asre with ensemble
models) exceeds the target ASR (i.e., asrT ). This results in
a sequence of test rounds at times {ti | i = 1, 2, . . . ,m}
(ti+1 = ti + v). At each test time ti, if the target ASR is
found to be maintained, the snapshot attack is skipped at the
current iteration. Otherwise, a new round of attack at time ti
is mounted on the current model snapshot(s), generating an

Algorithm 2: Iterative backdoor boosting
Input : Dataset D, local fine-tuning model(s), total

training iterations I , test times {t1, t2, . . . , tm},
threshold asrT

Output: A sequence P with elements of {tL, δ,BFG}
// Multi-round snapshot attacks
Generate an initial random trigger δ0
Initialize training iteration itr = 0, attack round i = 0
// attacks amid local fine-tuning
for current training iteration itr from 1 to I do

if itr in {t1, t2, · · · , tm} then
Test ASR (asr) using δi and D on local model(s)
if asr < asrT then

// new local attack round
i← i+ 1; δi,BFGi ← SnapshotAttack on

current local model(s)
tLi ← itr; Append {tLi , δi,BFGi} to P

else
Continue normal fine-tuning

updated δ and a new BFG. This procedure is continued till
the end of local training. With IBB, DeepVenom yields an n-
round attack with a perturbation schedule: {tLi , δi,BFGi}
for i from 1 to n where tLi is the time for the ith attack
round. Notably, the first attack round typically takes place
at the first test round (i.e., tL1 = t1). Algorithm 2 illustrates
the main steps of IBB.

6. DeepVenom Online Stage: Persisting Back-
doors with Rowhammer

In the online stage, the attacker performs the multi-round
weight perturbation using the perturbation schedule derived
from the offline stage. Since the input trigger is only used at
inference time of the victim’s fine-tuned model, the online
attack essentially only needs {tLi ,BFGi} (i ∈ [1, n]). A key
consideration is to determine the online fault attack time tRi
for each attack round i. By default, DeepVenom directly
maps the local attack times to those of the victim (i.e.,
tRi = tLi , i ∈ [1, n]). This synchronized-time attack requires
the attacker to track victim’s fine-tuning progress from the
beginning, which can be achieved with a microarchitectural
side channel. Moreover, in our evaluation we observe that
such attack time synchronization can be significantly relaxed
without incurring noticeable impact on the attack effective-
ness (See Section 8.2.3 for details). Applying a BFG at
runtime involves inducing bit-level faults in victim model’s
weights stored the memory during fine-tuning. Although
rowhammer is a well-understood attack vector for memory
fault injection [18], [50], [72], mounting it against modern
ML training routines poses several non-trivial challenges
that have not been studied. This includes: (i) identifying the
exact in-memory locations of the victim weights, i.e., the
victim weight tensors and their corresponding page offsets
for targeted weight bits; and (ii) accurately relocating the
weights to flippable locations across all model layers. We
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propose a generic three-stage procedure that is applicable to
mainstream ML training frameworks as follows:
Stage 1: Memory Profiling. Similar to prior rowhammer
exploitation [19], [50], [51], [52], [67], we first profile
DRAMs in the victim’s machine to identify cells susceptible
to bit flips. This consists of two main steps: (1) occupying
physically consecutive rows in DRAM to create rowhammer
memory layout, and (2) setting up alternating data patterns
in aggressor and target rows. Finally, the aggressor rows are
hammered by rapidly accessing them alternately to observe
bit flips in the target row and detect vulnerable cells. The
identified vulnerable cells form a bit flip profile.
Stage 2: DeepVenom Memory Massaging. Once the bit
flip profile is generated, the subsequent stage is to identify
victim’s weight data, specifically pages containing critical
bits targeted in the BFGs, and massage them into the target
row containing vulnerable DRAM cells in the same offset as
the critical bit. Compared to state-of-the-art bit flip attack in
ML frameworks (i.e., inference-time exploitation [19], [67]),
we find that memory massaging for model training/fine-
tuning presents the following unique challenges:
i) Reverse-engineering Memory Management: Prior studies
have relied on the memory management policy of ML
frameworks during inference (e.g., [19]), where the weights
remain fixed, hence it is natural to have a single copy
of the weights in memory throughout the entire inference
process. However, during training or fine-tuning, the weights
are updated after each forward-backward propagation cycle
(i.e., iteration), which necessitates runtime allocation and
de-allocation of memory buffers at various training stages.
Thus, it becomes necessary to select suitable persistent
memory buffers storing model weights to ensure effective bit
flipping. We investigated the backend memory management
in PyTorch during training/fine-tuning. As we can see in
Figure 5), at the beginning of model training, PyTorch
allocates a weight Tensor object for each layer in the model.
Each tensor keeps a pointer to memory allocated using the
posix_memalign function. The tensors (i.e., weights) are
populated either by reading from a disk file (in case of
fine-tuning a pre-trained model) or by using an initialization
policy (in case of regular training). Throughout the training
process, a scratchpad memory is used as temporary storage
for computing and storing weight deltas. The weight updates
are then directly applied to the initially-created tensors,
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ensuring that the delta remains within the range defined
by the learning rate hyper-parameter. While the scratchpad
memory is used to store weights during training, our in-
vestigation reveals that injecting bit flips into this memory
does not have a persistent effect on the actual weights. This
is because this memory buffer is reset at the beginning of
each training iteration. As a result, DeepVenom manages
to flip bit into the weight tensor objects that are allocated
at the model initialization time and cumulatively updated
throughout the training. Note that we also observe similar
mechanisms in the TensorFlow framework [73].
ii) Identifying Offset of Mis-aligned Weight Pages: The
posix memalign function allocates memory using malloc
with a desired memory alignment. By default, both Py-
Torch and TensorFlow use a 64-byte alignment for tensor
allocation on x86 systems. This alignment ensures fine-
grained memory usage and optimized cache block-level
allocation, leading to improved performance. However, a
key requirement in rowhammer is to determine bit offsets
in victim memory pages for precise memory massaging
and deterministic bit flip. Previous works [19], [67] tar-
get inference-optimized weight structures, which are page-
aligned, allowing for a direct correlation between weight
offset in a layer and its offset in memory pages. In contrast,
the training/fine-tuning process utilizes tensor data struc-
tures, which are not page-aligned (Figure 6). This poses a
significant challenge, as the misalignment of weight tensors
invalidates the deterministic relation between weights in a
layer and their offsets in actual memory pages.

To address this challenge, we propose a novel technique
called tensor weight offset identification. It leverages the
key observation that L1 cache in CPUs is typically one
page tall (i.e., containing exactly 64 sets for 64B blocks).
Specifically, we employ the L1 Prime+Probe method [74]
to monitor the L1 cache activity from the victim ML appli-
cation. Since each weight tensor is initialized sequentially,
the ML application brings each cache block belonging to
the tensor into the cache sequentially when populating it.
By determining which L1 cache set the victim first accesses
during the initialization of a specific layer, we can identify
the page offset corresponding to the starting address of a



weight tensor. Since the weights are stored sequentially in
memory using row-major format, we can thus calculate the
page offset of any specific weight bit in a weight tensor.
Using this technique, DeepVenom can identify candidate
vulnerable memory locations to map target bits in BFG in
order to perform the subsequent massaging and flipping.

iii) One-shot Layer-wise Memory Massaging: Once the page
offsets of misaligned weight tensors are determined, the next
step is to relocate pages in weight tensors targeted by a BFG
to matching physical pages (i.e., massaging). A matching
physical page for flip f in a BFG maps to a DRAM row
with a weak cell that has the desired bit offset and flipping
direction. This sets up the proper memory layouts for the
subsequent rowhammer.

To perform weight tensor massaging, DeepVenom first
creates a large memory allocation to populate physical
pages, leading to the possession of candidate matching
page frames for a BFG. Secondly, the attacker infers
the execution flow of the victim ML framework using a
FLUSH+RELOAD-based side channel [61], [67], [75] on
shared library functions. Note that microarchitectural side
channels have been well studied and shown to be effec-
tive in tracking victim execution patterns [66], [75], [76],
[77], [78], [79], [80]. DeepVenom targets cache lines in
carefully-selected PyTorch backend libraries to detect when
the training routine is about to populate weight tensors for
a specific layer. DeepVenom then abuses the Linux’s page
reclamation policy, which features a per-core last-in-first-out
buffer (Pageset) that holds recently-freed physical page
frames. Particularly, similar to the technique used in [67],
right before victim’s allocation of the targeted weight tensor
pages, DeepVenom frees its matching physical pages in the
reverse order of the ML rountine’s tensor page allocation.
Consequently, upon layer initialization, matching physical
pages are picked up by the ML rountine and mapped to
the targeted tensor pages maliciously. One challenge for
DeepVenom’s memory massaging is the use of multiple
BFGs, which potentially requires a complex multiple-round
massaging. Fortunately, we observe that weight pages tar-
geted across the BFGs do not overlap. As a result, it
is sufficient for DeepVenom to only perform a one-shot
massaging w.r.t. all BFGs, with the flipping of bits in each
BFG to occur at its designated time.

Stage 3: Fault Injection via Rowhammer. Once the victim
pages are positioned in the desirable physical locations, the
targeted weight bits are flipped using rowhammer. In par-
ticular, we use double-sided rowhammer where the attacker
alternately accesses two rows directly adjacent to the target
row. DeepVenom attempts to induce the bit for each fi in
the BFG one by one for the current attack round. To bypass
Target Row Refresh (TRR [54]) in newer DRAM devices,
DeepVenom employs fuzzing activation patterns to confuse
TRR. To determine how many fuzzing rows are required, we
test rowhammer with increasing number of fuzzing rows in
the same bank during memory profiling and figure out the
minimal set of fuzzing row accesses to induce flips. We
record the entire fuzzing patterns in the bit flip profile to

Platform CPU Memory
A Intel i7-3770 (Ivy Bridge) 16GB Hynix DDR3-1333
B Intel i5-9500 (Coffee Lake) 8GB Samsung DDR4-2400

TABLE 1: Hardware platforms for DeepVenom evaluation.

access them during runtime fault injection. Afterwards, the
attacker will use the last attack round’s trigger (i.e., δn) to
activate the backdoor in the victim’s fine-tuned model.

7. Experimental Setup

Hardware and Software Setup. To demonstrate rowham-
mer in real systems, we configure machines with various
hardware configurations in our testbed. Specifically, our
machines are equipped with Intel CPUs from multiple gener-
ations including i7-3700 (IvyBridge), i5-4590 (Haswell), i5-
9500 (CoffeeLake) and i7-10700 (Cometlake). The equipped
DRAM include DDR3 and DDR4 DIMMs from two major
vendors with manufacturing years ranging from 2015 to
2021. We are able to reverse-engineer the physical address
mapping and test rowhammer vulnerabilities on all these
machines. Notably, all configurations exhibit high rowham-
mer bit flip accuracy. Since the rowhammer attack vector
is relatively independent of the DeepVenom algorithm, we
mainly evaluate DeepVenom on two different hardware plat-
forms, as detailed in Table 1, one using DDR3 memory and
another with the more recent DDR4 memory.

We select five DNN model and downstream dataset
settings for our evaluation including VGG16-GTSRB,
ResNet18-CIFAR10, ResNet18-SVHN, ResNet50-EuroSat
and ViT-CIFAR100. These models are obtained from
Torchvision that are pre-trained with ImageNet [81]. The
fine-tuning datasets have varying sizes ranging from rela-
tively small (i.e., EuroSat [82]) to comparatively large (i.e.,
SVHN [83]). Note that, as a common practice in transfer
learning, the last layer(s) of the pre-trained model will be
replaced with a fully connected layer to match the victim’s
downstream task for fine-tuning. The model fine-tuning is
performed using Pytorch 1.13 with the Caffe2 backend.
DeepVenom Configurations. In default configuration, the
Adam optimizer [84] is used for both local (attacker) and
remote (victim) fine-tuning. The fine-tuning learning rate
is set to a regular value of 0.00002 for the victim, and
fixed at 0.00005 for attacker’s local substitute models. Our
evaluation also investigates the attack when victim lever-
ages different optimizers and learning rates. The ensemble
method employs 5 substitute models. For the signature
neuron selection, we empirically designate 100 neurons for
VGG16 and ResNet50, 20 neurons for ResNet18 and 50
neurons for ViT. We set the hyper-parameter λ to 1.0 and
choose the second class as the backdoor target without loss
of generality. For trigger generation, aligned with prior state-
of-the-art backdoor studies, the trigger size is set to of 9.76%
of input area for CNNs [11], [23] and 0.51% for ViT [65].
For bit identification, we examine the top 10 susceptible
bit candidates per layer and set the ASR threshold asrT at
97% across all experiments. Finally, for each attack round,



Learning
Scenario

Model
Parameters

No. of
bit flips

ASR (%) on Local ASR (%) on Victim ACC (%) on Victim
Trigger Trigger+BF Trigger Trigger+BF Origin With BF

VGG16-GTSRB 138M 19 38.0±8.0% 97.4±3.0% 18.0±4.0% 98.8±1.0% 99.8% 99.8±0.1%
ResNet18-CIFAR10 11M 15 51.0±9.6% 98.4±0.7% 46.6±3.3% 97.8±1.8% 80.3% 80.2±0.2%

ResNet18-SVHN 11M 11 54.9±7.7% 98.5±1.1% 53.5±8.5% 95.8±1.7% 92.1% 92.1±0.2%
ResNet50-EuroSat 23M 49 65.4±13.3% 97.0±4.2% 58.6±3.1% 99.8±0.3% 98.4% 98.3±0.3%

ViT-CIFAR100 86M 47 1.2±0.3% 97.4±2.3% 1.5±0.5% 97.0±4.4% 85.8% 85.5±0.4%

TABLE 2: Evaluation results on the main attack configuration (with the ensemble method). Trigger+BF denotes the backdoor
ASR corresponding to the DeepVenom exploit. Each ASR and ACC result is denoted as average±stdev.

the maximum number of bit flips is capped at 20 to limit
the immediate impact on accuracy drops during fine-tuning.

We assume that the attacker has knowledge of a limited
amount of the victim’s dataset (5% by default), which is
used by DeepVenom to generate the input trigger. The fine-
tuning duration is configured to 20 epochs for models with
GTSRB and CIFAR10, 40 epochs for SVHN, 10 epochs for
EuroSat, and 2 epochs for CIFAR100. We set the batch size
at to be 64 for Eurosat, 32 for CIFAR100 and 128 for the
remaining datasets. The initial local attack time tL1 is set at
the starting 30th epoch for SVHN and right at the middle
of fine-tuning for all other configurations. Such an attack
time setting ensures the attack happens in the fine-tuning
saturation stage where model accuracy stabilizes and the
feature map becomes more consistent. The interval between
two consecutive test rounds v is set to 100 (Section 5.3).
By default, the online attack inherits the local attack time
for each round, and the ensemble mode is enabled.

8. Evaluation

8.1. DeepVenom Rowhammer Exploitation

We use both DDR3 (Platform-A) and DDR4 (Platform-
B) based systems (Table 1) to evaluate DeepVenom. We
observe that Platform-B uses a relatively complex memory
addressing function. We first reverse-engineer the addressing
to determine page mappings into physical DRAM banks
and rows. From our findings, the addressing function for
the bank selection in Platform B is: A6 ⊕A13, A14 ⊕A17,
A15 ⊕ A18, A16 ⊕ A19. In addition, we also observe that
DDR4 DIMMs use row remapping where logically consec-
utive rows are not necessarily adjacent physically. As such,
the memory layout formation is adjusted accordingly for
the correct victim row hammering. Finally, we observe that
a minimum of 10 fuzzing rows is needed for successful
rowhammer in Platform B. For Platform A, regular double-
sided rowhammer is sufficient.
End-to-end DeepVenom Exploitation. In order to in-
ject faults according to the BFGs, a bit flip profile
for the target platform is obtained (Stage 1 in Sec-
tion 6. In the second stage, to determine page offsets
for weight tensors (Stage 2-ii), we identify an FR anchor
(i.e., cache line to be monitored via FLUSH+RELOAD)
in the PyTorchStreamReader::getRecord(const
std::string& name) function of the PyTorch library
(caffe2/serialize/inline container.cc). This anchor is trig-
gered when the victim ML application is about to popu-

late the weights corresponding to a layer. Once the pre-
initialization of a layer is detected with the timing channel,
we start the Prime+Probe-based cache set monitoring to
figure out the starting page offset of the targeted weight
tensor for that layer. As each weight is stored sequentially,
we calculate the bit offset in a page of the specific weight
based on the starting cache block offset of the tensor and the
weight offset in that layer. We then massage these specific
pages to vulnerable locations (Stage 2-iii).

After the targeted weight tensor pages are properly relo-
cated, DeepVenom monitors victim’s execution flow to de-
termine current fine-tuning iterations to enable fault attacks
at desired times (Stage 3). We use FR anchors to function
at::native::linear() in aten/src/ATen/native/Lin-
ear.cpp and function at::native::_convolution()
in aten/src/ATen/native/Convolution.cpp, which are executed
for each linear and convolution layer a DNN model, respec-
tively. This side channel allows us to determine the start
of a fine-tuning iteration and which layer’s computation is
currently ongoing in the victim ML routine. Once the target
iteration is detected for an attack round, DeepVenom mount
the rowhammer attack to perturb model weights according
to the BFG. We observe above 99% flip accuracy when each
rowhammer interval spans 3 DRAM refresh cycles.

8.2. DeepVenom Attack Performance

To evaluate DeepVenom, we use the following three met-
rics: 1) Attack success rate (ASR) quantifies the percentage
of triggered inputs that is classified into the target class
by the victim’s fine-tuned model after attack; 2) Number
of bit flips records the total bits identified to flip across
attack rounds; 3) Normal accuracy (ACC) evaluates the
trained model’s performance on normal inputs, representing
attack stealthiness. To understand the effectiveness of weight
perturbation, we also report the backdoor ASR using only
the trigger, without bit flipping (i.e., trigger ASR).

8.2.1. Main Configuration Attack Results. We first eval-
uate the efficacy of DeepVenom on the five model/dataset
pairs (i.e., learning scenarios) under the default attack con-
figuration (Section 7). DeepVenom is run once locally with
ensemble models, which generates one perturbation sched-
ule per learning scenario. Table 2 shows the evaluation
results including the number of bit flips and the attack
performance on both local and victim models. Note that the
local ASR number is averaged among the local ensemble
models, while each victim ASR/ACC number is computed
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Figure 7: The ASR trends with the multi-round attack throughout fine-tuning iterations. In Figure 7a, the red triangle and
black dot denote the ASR for an attack round (when a BFG is applied) and for a test round (no bit flip), respectively.
Figure 7b shows the number of bit flips in attack rounds for the model shown above correspondingly.

based on the results of 10 victim fine-tuning attack instances
under the same perturbation schedule.

It is observed that our DeepVenom attack on substitute
models is highly successful among all learning scenarios
with local ASRs ranging from 97.0% to 98.5% (Trig-
ger+BF). Also, the contribution of weight perturbation to
the backdoor is significant as the ASRs achieved for only
using the trigger is limited. For instance, VGG16 fine-tuned
with GTSRB has 38% trigger-only ASR, while exhibiting
an average of 97.4% ASR by applying the multi-round
weight perturbation. Importantly, DeepVenom achieves upto
99.8% attack success rate (97.8% on average) on all victim
models that undertake fine-tuning with minimal impact of
normal accuracy (<0.4% changes in ACC). Meanwhile,
the remote attack is also very stable with negligible ASR
fluctuations among different victim fine-tuning instances
(i.e., the small stdev values). More importantly, Deep-
Venom’s backdoor feature is implanted by using only 11
to 49 bit flips in state-of-the-art CNN and Transformer-
based models, which contains upto hundreds of millions
of weight parameters. We further observe that the weight
bits are all applied successfully (i.e., close to 100% flipping
success rate) during victim’s fine-tuning where exact model
weights are unknown. This indicates that DeepVenom’s
weight perturbation transfers extremely well from the local
to remote models. Note that we have additionally evaluated
DeepVenom using a single substitute model (not shown in
paper due to space limit). The results reveal that while both
methods succeed locally, DeepVenom with the ensemble
method is able to improve the remote victim ASR by 12%
on average. Overall, the evaluation shows that DeepVenom
is highly effective in inserting backdoor through training-

time weight perturbations.
We further present the detailed results for each Deep-

Venom attack round. Figure 7 demonstrates the ASR trends
and the number of bit flips as the multi-round weight
perturbation progresses. Figure 7a shows local (top) and
victim (bottom) ASR values starting from the first attack
round (tL1 ). Note that the intermediate ASRs for victim’s
fine-tuning are shown merely to understand the effect of
weight perturbation round by round, which are not evaluated
in the actual runtime attack. As we can see, for all the
CNN models, the first-round of attack is able to bring the
immediate local victim ASR to above 97%. Meanwhile, as
expected, the regular fine-tuning of the downstream task
weakens the initial backdoor effect, which triggers new
snapshot attacks at subsequent test rounds (red triangles in
Figure 7a). An exception is ViT-CIFAR100 with about 70%
first round local attack ASR. This is because the search
algorithm reaches 20 bit flips in the BFG before the target
ASR is met locally (as is shown in Figure 7b). Interestingly,
the backdoor in all models is gradually stabilized as more
rounds of attacks are mounted. This is evidenced by the
observation of longer attack intervals and less ASR fluc-
tuation towards the end, which is particularly evident in
ResNet50-EuroSat. Furthermore, with the high perturbation
transferability, the victim’s ASR trend largely follows that
of the local ASR, leading to a successful backdoor in the
victim’s fine-tuned model. Finally, as shown in Figure 7b,
the first round attack consistently involves the most bit
flips while other rounds require significantly fewer flipping
(e.g., 1-2 bits commonly). We believe this is because the
subsequent BFGs work by calibrating the backdoor largely
induced by the first-round weight perturbation.



Learning
Settings

No. of
Bit Flips

Adam, LR=1e-5 Adam, LR=2e-5 Adam, LR=5e-5 SGD, LR=5e-4 SGD, LR=1e-3
ASR AD ASR AD ASR AD ASR AD ASR AD

VGG16-GTSRB 19 98.1±1.6% 0.1% 98.8±1.0% 0.0% 93.5±3.3% 0.0% 92.9±4.6% 0.0% 94.4±5.3% 0.0%
ResNet18-CIFAR10 15 98.6±1.8% -0.1% 97.8±1.8% 0.1% 92.9±4.3% -0.2% 90.8±2.6% -0.1% 87.4±4.4% -0.1%

ResNet18-SVHN 11 97.7±1.6% 0.0% 95.8±1.7% 0.0% 77.1±7.1% 0.0% 77.7±5.3% -0.1% 58.0±8.1% 0.1%
ResNet50-EuroSat 49 99.5±0.8% 0.4% 99.8±0.3% 0.1% 90.9±5.8% 0.3% 99.1±1.5% 0.0% 98.3±2.0% 0.4%

ViT-CIFAR100 47 99.5±0.5% -0.1% 97.0±4.4% 0.3% 72.9±8.1% 0.6% 98.3±0.9% 0.0% 82.2±9.4% 0.3%

TABLE 3: Attack results with different optimizers and learning rates in victim’s fine-tuning. AD is the ACC difference.
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Figure 8: Results with relaxed attack time requirement. 0% and 100% denote the start and end of victim’s fine-tuning.

8.2.2. Attacks with Varying Victim Model Hyper-
parameters. As mentioned in Section 3, the fine-tuning
process is set by the victim and unknown to the attacker
ahead of time. In this section, we evaluate the effectiveness
of DeepVenom when the victim adopts different hyper-
parameters. To do so, we vary two critical hyperparame-
ter including the optimizer and learning rate (LR), which
generate five different fine-tuning settings for each model:
Adam with learning rates: e−5, 2e−5 and 5e−5; SGD with
learning rates: 5e−4 and 1e−3. The same perturbation sched-
ule (Section 8.2.1) is used to backdoor the victim model.
Table 3 elaborates the corresponding attack performance for
all models. Specifically, when the victim utilizes the same
Adam optimizer as the attacker, we can see that DeepVenom
can achieve high ASRs under all the learning rates: 98.7%,
97.8% and 85.5% on average for e−5, 2e−5 and 5e−5 LR,
respectively. Additionally, with the use of SGD in victim
fine-tuning, we observe slight ASR degradation for most
of the models. For instance, VGG16-GTSRB demonstrates
92.9% to 94.4% ASR, which corresponds to around 5%
ASR drop compared to the attack with the default con-
figuration (See Table 2). Finally, the attack on ResNet18-
SVHN shows high sensitivity with non-trivial ASR decrease
under significantly discrepant local/victim hyperparameter
settings (e.g., victim with SGD and e−3 LR). One factor
that potentially contributes to such a phenomenon is the fast
convergence of backdoor in the local attack for ResNet18-
SVHN. As we see in Fig 7a, the local attack completes
with only 3 attack rounds. This results in relatively long
period without any weight perturbation at victim’s runtime,
during which the backdoor is weakened at a faster rate (due
to hyperparameter mismatches). Nevertheless, DeepVenom
can still manifest successfully in most of the cases as hyper-
parameters vary, showing its wide applicability in practical
fine-tuning settings.

8.2.3. DeepVenom with Relaxed Attack Time Require-
ment. As mentioned in Section 7, under the default attack
configuration, each attack round on the victim model (to
apply BFGi) is mounted to mirror the local attack time

(tLi ). Such a setting could be restrictive as it requires precise
monitoring of victim’s fine-tuning progress. We perform ex-
periments to understand the effect of attack time relaxations
on DeepVenom. In particular, we sample the initial attack
start time (i.e., tR1 ) throughout the entire victim fine-tuning.
Additionally, a fixed interval (equivalent to the absolute
time needed for 100 training iterations) is used between
two consecutive attack rounds. Note that in the default
DeepVenom configuration, the interval between consecutive
attack rounds is not constant (See Figure 7a). This is similar
to an asynchronous attack that can be carried out along with
the victim ML routine independently. Figure 8 shows the
final ASR on victim’s fine-tuned model as DeepVenom is
launched at different times during runtime. The results show
that the attack ASR is almost the same when initialized at
most points during the fine-tuning. For example, initiating
the attack within the first 90% of the fine-tuning process
results in less than 2% ASR difference on VGG16-GTSRB,
and less than 1% on ResNet18-CIFAR10. In addition,
ResNet-SVHN exhibits some ASR drop when launching the
attack towards the beginning of fine-tuning (i.e., 84.7% at
0% progress). This result aligns with the previous observa-
tion that the forgetting is more pronounced in ResNet-SVHN
due to its short attack rounds. Finally, there is non-trivial
ASR degradation when DeepVenom starts close to the end
times. Specifically, the achieved ASR for ResNet50-EuroSat
and ResNet-SVHN is 87.2% and 88.2% at 100% progress,
respectively. Such a decline is due to missed attack rounds,
which is especially obvious for ViT-CIFAR100 where the
first round attack cannot raise the ASR to above threshold. In
summary, we find that DeepVenom can manifest at victim’s
runtime successfully in a asynchronous manner, without the
need for precise victim fine-tuning tracking.

8.2.4. Impact of Extended Fine-tuning and Data Avail-
ability. Prior studies have revealed that additional training
of a trojaned model with clean dataset can diminish the
backdoor (e.g., [85]). This can be regarded as exploiting
the catastrophic forgetting with exclusive benign training. To
investigate the strength of DeepVenom backdoor post attack,
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Figure 9: Impact of additional training after victim’s regular
fine tuning with DeepVenom attack. The first point in the x
axis denotes the beginning of extended fine-tuning.

ResNet18 + CIFAR10 ViT+ CIFAR100Training
Data (%) ASR (%) AD (%) ASR (%) AD (%)

5% 97.8±1.8% 0.0% 97.0±4.4% 0.0%
4% 95.5±1.2% 0.2% 92.8±5.7% 0.1%
3% 95.6±2.3% 0.0% 96.2±7.3% -0.1%
2% 87.4±3.4% 0.1% 65.0±31.7% 0.1%
1% 47.8±6.9% 0.0% 40.2±37.3% 0.1%

TABLE 4: DeepVenom ASR and ACC difference (AD) with
various downstream data availability.

we train victim’s fine-tuned models for an additional period
of time (i.e., extended fine-tuning). Specifically, we extend
fine-tuning for ResNet18-CIFAR10 and ViT-CIFAR100 (for
10 and 1 epochs respectively) using the same hyperparam-
eters in default configuration. The results (Figure 9) show
that the DeepVenom backdoors are robust in both models
with a minimal 1.3% decline in ASR in the end. The high
robustness of backdoor against extended fine-tuning is due
to the iterative backdoor boosting that stably implants the
backdoor (See Appendix C for further analysis).

Our primary attack assumes access to 5% of victim’s
dataset. We further study the impact of data availability
by gradually reducing the usable dataset from 5% to 1%.
Under each dataset setting, DeepVenom is re-run on the
local model and a new perturbation schedule is generated.
The perturbation schedule is then used to evaluate the victim
ASR over 10 runs. Table 4 illustrates the achieved victim
ASR and the ACC difference for ResNet18 and ViT. We
can see that DeepVenom can still manipulate successfully
with only 3% of victim dataset (95.6% and 96.2% ASR,
respectively). Meanwhile, a considerable decline of ASR is
observed with dataset availability drops to 1% (e.g., 47.8%
for ResNet18). We note that an extremely low dataset size
leads to imprecise capture of model properties at training
time (e.g., signature neurons), which is a common phe-
nomenon in targeted backdoors.

8.2.5. Feasibility of DeepVenom on GPU-based Fine-
tuning. DeepVenom mainly targets CPU-based systems with
DRAM rowhammer vulnerabilities for end-to-end exploita-
tion. While GPUs have been the primary hardware for ML
workloads, fine-tuning is typically lightweight and is well
supported/used in CPU-based platforms. Also, DeepVenom
can be applied to systems where GPUs share the host
memory with CPUs. For discrete GPUs, the weights are gen-
erally maintained in GPU memory during fine-tuning. Under
such setup, GPU’s memory (HBM/GDDR) needs to be

Learning
Settings

DeepVenom (original) DeepVenom (constrained)
ASR #BF ASR #BF

VGG16-GTSRB 17.7±3.4% 19 91.3±6.8% 52
ResNet18-CIFAR10 61.7±4.0% 15 92.2±3.5% 46

TABLE 5: DeepVenom with constrained model weights
updating.

rowhammered for memory perturbation. Note that while this
work does not investigate GPU fault attacks, the rowhammer
vulnerability is believed to also exist GPU memories since
they use the same device technologies as DRAM memories
(as evidenced in recent studies in HBM [86]). Finally, the
main DeepVenom algorithm is independent of rowhammer
exploit and is effective to training-time bit flip-based back-
door in GPUs. To justify, we mount an attack against a
victim model under fine-tuning with NVIDIA A40 GPU
for VGG16-GTSRB and ResNet18-CIFAR10. The attack
utilizes the same perturbation schedules generated for CPU
attacks, and bit flips are emulated in GPUs by changing
the weight bits from software. The victim model attacks
are performed 10 times for each model. We observe that
the attack ASRs on the GPU are comparable to the CPU
counterparts with <1.4% difference.

9. Discussions on DeepVenom Mitigation

Existing Backdoor Defenses. Existing backdoor defenses
can be categorized based on their targeted goals (i.e., trigger
or model) and attack stages (i.e., inference or training).
Specifically, to neutralize backdoors, several prior studies
aim to detect and mitigate triggered inputs [87], [88], [89],
[90]. For instance, NeuronCleanse [87] identifies input trig-
gers associated with a specific label. Our attack has the po-
tential to evade such detection as DeepVenom’s trigger only
manipulates signature neurons in the intermediate represen-
tation. Input filtering techniques seek to remove samples
with triggers from the training or test datasets [91], [92],
[93], [94]. DeepVenom circumvents training sample filtering
as it manifests without tampering training data. Test-time
filtering, on the other hand, can detect malicious inputs after
model deployment. However, note that many existing works
have proposed backdoor attacks with stealthy triggers [95],
[96], which is orthogonal and can be potentially adopted in
DeepVenom. Additionally, previous works [85] proposed to
retrain an untrusted model with clean samples to diminish
backdoor. Our evaluation (Section 8.2.4) demonstrates the
strong robustness against extended fine-tuning. Also, exces-
sively prolonged model training can lead to the issues of
model overfitting. Finally, model diagnosis approaches [97],
[98] inspect candidate models to extract potential backdoor
features, which can be leveraged to identify poisoned PTMs.
In contrast, DeepVenom works when the victim starts with
a clean models for fine-tuning.
Potential Future Defense Strategies. We evaluate a po-
tential defense strategy against DeepVenom, considering
the attack’s unique weight perturbation. Particularly, we
observe that weights with bit flips may fall outside their



corresponding layer’s value distribution in the initial PTM.
One plausible mitigation is to implement a layer-wise check-
ing mechanism that limits the floating-point weights to the
layer’s maximum (or minimum) when the weight value over-
flow (or underflow). Table 5 shows the impact on ASR with
the original DeepVenom on VGG16-GTSRB and ResNet18-
CIFAR10. We observe considerable decrease in ASRs (to
the average of 39.7%) among two models, indicating that
constraining weight can be a potential protection knob.
On the other hand, an informed attacker may manage to
maintain the perturbed weights’ value within the normal
range. Specifically, for bit flips exceeding the layer’s weight
range, the weight can be locally clamped by the attacker
to model the restricted influence of weight perturbation.
The result of the enhanced DeepVenom is also shown in
Table 5. The evaluation demonstrates that high ASRs can
again be retained (i.e., 91.8% for VGG16 and 92.2% for
ResNet18), with the need for more bit flips (i.e., 19→52
and 15→46). Hence, more aggressive and advanced weight
limiting mechanisms are necessary to sufficiently invalidate
the DeepVenom backdoor.

10. Conclusion

The advances in hardware-based attacks have high-
lighted the importance of understanding hardware security
for machine learning systems. This paper presents Deep-
Venom, a novel attack that inserts targeted backdoors in
victim’s model during training via fault attacks in the weight
memory. We investigate the challenges of launching bit flip-
based attacks during model fine-tuning, and design effective
attack mechanisms that for the first time enable transfer
of weight perturbation from local to remote victim mod-
els for backdoor insertion. We implement an end-to-end
DeepVenom attacks and evaluate its efficacy in real systems
with DDR3 and DDR4 memories. The evaluation shows
that DeepVenom can successfully backdoor state-of-the-art
CNN and vision Transformer models with as few as 11-49
flips using rowhammer. Our work opens a new dimension in
adversarial machine learning, and motivates future research
to understand and tame training-time model tampering from
hardware.
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Appendix A.
Applicability of Prior Bit Flip Attacks in Trans-
fer Learning

Prior inference time fault-based backdoors [10], [11],
[23] cannot be directly applied to the transfer learning
attack scenario. This is because those methods manifest at
inference time and rely on knowing the exact weights (es-
pecially weights in the last layers). To justify this claim, we
evaluate two representative bit flip-based backdoor attacks:
ProFlip [11] and TBT [23]. Since these attacks are not ini-
tially designed to manifest in transfer learning, we perform
adaptions as the following: 1. We obtain a snapshot of the
local substitute model, which can be treated as white-box; 2.
The two algorithms are used to identify vulnerable weight
bits in this model; 3. The targeted weight bits are flipped
at the end of victim’s fine-tuning to minimize the effect
of catastrophic forgetting. Note that for fair comparison,
the adapted bit search algorithms take advantage of all the
victim data known by the attacker in our threat model.

We evaluate these two attacks with two models, namely
ResNet18-CIFAR10 and ViT-CIFAR100. For each algo-
rithm, the online attack is run for 10 times using the same
hyper-parameters as in the default DeepVenom (Section 7).
As we can see from Table 6, while these attacks can succeed
on the snapshot of the local models with > 93% ASR, the
attacks fail to transfer to the victim’s model with as low
as 1.4% and 2.2% ASR, respectively. We also observe a
higher ASRs (e.g., upto 57.6% but still not successful) for
ResNet18 models. However, such improvement is mainly
due to input triggers as the final ASRs are close to trigger-
only ASRs. This indicates the influence of bit flips with the
two attacks are trivial. Finally, both algorithms have very
low bit flipping success rate (i.e., 51.1% to 60.4%).

Attack
Type

Learning
Settings

ASR(%)
on Local

ASR(%) on Victim Bit Flip
Rate(%)Trigger Trigger + BF

TBT [23] ResNet18-CIFAR10 98.0% 51.1±3.2% 48.3±20.5% 51.1%
ViT-CIFAR100 93.0% 1.3±0.3% 2.2±2.7% 51.8%

ProFlip [11] ResNet18-CIFAR10 95.5% 44.6±6.8% 57.6±11.8% 53.0%
ViT-CIFAR100 94.1% 1.0±0.2% 1.4±1.3% 60.4%

TABLE 6: Inference-time bit flip backdoor attacks in trans-
fer learning.

Appendix B.
Fine-tuning Weight Bit In-variance Analysis

Prior works reveal that model weights have similar val-
ues before and after fine-tuning (e.g., [99]). To understand
changes at bit level, we compare bit value difference for
each weight due to fine-tuning. We group the statistics based
on the bit offset in the FP32 floating-point representation.
Fig 10 shows for each bit offset (among all weights), the
percentage of bits that keep their initial value in the PTM
as well as those that change their states by normal fine-
tuning. We observe that for mantissa fields ([0, 22]), the bit
values are distributed uniformly among ‘0’ and ‘1’ initially
(close to 50%), and each bit value has roughly 50% chance
of being updated after fine-tuning (e.g., half of bit ‘0’s

unchanged and another half of ‘0’s updated to ‘1’). These
bits are highly variant and are not suitable flipping candi-
dates. In the exponent fields ([23, 30]), the three LSBs and
one MSB (at offset 23, 24, 25 and 30) consistently exhibit
low ‘0’ to ‘1’ update rate, which means they are highly
invariant bits for ’0’→‘1’ flip. However, we empirically
find that flipping the exponent’s MSB incurs tremendous
value change that breaks the training process. Finally, while
the sign bit (offset 31) shows stability for both ‘0’ and ‘1’
values, the introduced change with a flip is small in FP32.
For similar considerations, we also exclude bit offsets with
stable ‘1’s (e.g., bit offset 26). As a result, we identify the
three stable exponent LSBs as the invariant bits to target.
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Figure 10: Bit value change statistics before and after model
fine-tuning at each bit offset for FP32 weights.
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Figure 11: ASR trend during victim’s fine-tuning. The red
dot denotes the first round attack (BFG1 is applied at tR1 ).

Appendix C.
Single Round DeepVenom Attack

We further investigate the effectiveness of DeepVenom
if only a single round attack is performed on the victim
model. Figure 11 illustrates the trend of ASR when the
first round attack is performed (i.e., BFG1 at tR1 ) and the
regular fine-tuning continues till the end. As we can see,
for all four learning scenarios, one round attack elevates
the immediate ASR to a high value. However, without
further backdoor boosting through additional attack round,
the backdoor gradually weakens, Particularly, VGG16 and
ResNet50 models experience a substantial ASR drop, with
only 51.5% and 36.5% ASR respectively, after fine-tuning
is completed. This is in contrast to our evaluation shown in
Section 8.2.4 that the backdoor in models after the multi-
round DeepVenom attack is robust to extended fine-tuning.
The results highlight the importance of DeepVenom’s itera-
tive boosting in stabilizing the backdoor in victim models.



Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper investigated the feasibility of introducing
hardware trojans in DNN models using hardware-based fault
injection. The backdoor is injected during the fine-tuning
stage by (1) leveraging a cache side-channel to monitor the
start of the fine-tuning and (2) leveraging rowhammer to
flip critical bits of the model. The prototype DeepVenom
is evaluated on both a legacy DDR3 platform and a more
recent DDR4 platform, with five pre-trained computer vision
models implemented using PyTorch. The proposed attack
achieves up to 99.8% success rate, with low accuracy drop,
and only 11-49 bit flips.

D.2. Scientific Contributions

• Identifies an Impactful Vulnerability.
• Provides a Valuable Step Forward in an Established

Field.

D.3. Reasons for Acceptance

1) The paper is well-written.
2) The proposed attack is new and interesting.
3) While each component attack is known, the integration

required the development of new techniques to over-
come several new challenges

4) The evaluation is on real hardware, extensive, and the
results are impressive.

D.4. Noteworthy Concerns

1) The assumptions about co-location, partial dataset,
coarse-grain information on fine-tuning timing could
be hard to satisfy in practice.

2) The proposed attack is only evaluated/validated on
CPU-based fine-tuning.
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