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Abstract—Modern secure processors rely on hardware-assisted
encryption and tree-based integrity verification to protect off-chip
data. However, despite extensive research on performance opti-
mization, there is a significant lack of emphasis on side channel
vulnerabilities in secure architectures. Given the strong focus on
data security, it is critical to ensure that the integration of new
design elements into secure architectures does not inadvertently
introduce additional vulnerabilities.

Existing integrity verification mechanisms use a global in-
tegrity tree shared across security domains, which can introduce
side channel leakage through integrity tree metadata sharing. In
this work, we present IvLeague framework — a novel integrity ver-
ification mechanism for side channel-resistant isolated integrity
trees among dynamic domains in secure processors. Specifically,
IvLeague splits the global tree into multiple fixed-size subtrees,
dynamically allocating these subtrees to domains during runtime.
IvLeague enables efficient runtime scaling of memory coverage
for individual domains. Additionally, we IvLeague-Invert, an
optimization which shortens the integrity verification path by
mapping data pages to high-level tree nodes. Finally, IvLeague-
Pro further improves the integrity verification of hotpages by
enabling efficient hotpage tracking and migrating hotpages closer
to the root. We extensively evaluate all three IvLeague schemes
using 16 real-world workloads with varying memory footprints.
IvLeague scheme, along with its optimizations, demonstrates a
5%-19% speedup over the insecure baseline, while providing
effective side channel protection for the integrity tree. Moreover,
IvLeague ensures high utilization of TreeLings (over 99.5%) and
supports workloads with highly skewed memory footprints.

Index Terms—Secure architectures, Metadata Side channels,
Trusted execution environment, Isolated integrity trees.

I. INTRODUCTION

Trusted computing has drawn considerable attention due to
the growing concerns of trust in remote computing platforms
(e.g., cloud services). State-of-the-art mechanisms employ
secure architectures that take the processor as the root-of-trust
and employ hardware-based encryption and integrity verifi-
cation to offer strong data protection. Best-practice solutions
such as Intel SGX [1] provide a trusted execution environment
(TEE) that protects program execution in enclaves against
adversaries that can compromise off-chip hardware [2] and
privileged software [3], [4], [5], [6], [7]. While protecting
off-chip data is essential, ensuring on-chip data security is of
paramount importance. Recent advances in microarchitectural
attacks (for example, timing channels) [8], [9], [10], [11], [12],
[13], [14], [15], [16] highlight that program secrets can be
severely exfiltrated by attackers by modulating microarchi-
tectural states in various on-chip hardware resources, which
leads to numerous proposals on protecting microarchitecture

security [17], [18], [19], [20], [21], [22], [23], [24]. As
industry and academia increasingly advocate secure-by-design
architectures [1], [25], [26], [27], it is imperative to investigate
the impact of security mechanisms as they are integrated and
to enhance data security holistically in future systems.

Although prior works have demonstrated microarchitectural
attacks in secure processors [12], [28], [29], [30], they gener-
ally exploit known vulnerabilities that are already manifested
in classical settings (e.g., timing channels on caches [9],
[10]). As such, they do not necessarily expand the current
microarchitecture attack surface. In fact, commercial-off-the-
shelf SGX hardware explicitly excludes side channels from its
threat model [1], stating that microarchitecture security should
be handled separately. Unfortunately, security of microarchi-
tecture cannot be treated as a standalone problem in secure
architectures [31], [32]. Specifically, the recent research [32]
unveils that the integrity verification (IV) mechanism using
tree-based metadata in secure processors introduces new side
channel leakage by design. With a global IV tree, mem-
ory accesses in one domain (e.g., an enclave) unavoidably
exercise integrity tree nodes at certain levels shared with
other domains [32]. This implicit metadata sharing enables
new shared-memory side channels even when regular data
sharing is prohibited among domains (i.e., to defeat existing
attacks such as Flush+Reload [13], [33], [34]). Such leakage
in secure processors exacerbates microarchitecture security,
and more concerningly, cannot be effectively mitigated by
directly adopting existing defenses such as resource access
randomization and partitioning [35], [36], [37]. In contrast to
prior side channels that predominantly exploit the sharing of
hardware resources, this vulnerability stems from a new source
of sharing—metadata.

This paper aims to thwart side channels that exploit shared
security metadata in secure processors [32]. Since the underly-
ing vulnerability is the use of a global integrity tree, a plausible
solution is to enforce IV metadata isolation among security
domains. While statically partitioning the integrity tree can be
a straightforward approach [31], such a mechanism does not
allow runtime scaling of the number and size of secure do-
mains. Ideally, an isolated integrity tree per domain should be
maintained to prevent metadata sharing across domains. This
tree should also be adjusted at runtime in order to cover the dy-
namic range of memory footprints for the domain. However,
partitioning integrity trees and dynamically managing them at
runtime can introduce several main challenges: i) non-trivial



performance overhead due to the potential memory indirec-
tions needed for traversing dynamically-constructed integrity
trees, ii) the need for efficient hardware-based mechanisms to
manage tree nodes for runtime workload memory usages, and
iii) support for easy scaling of domains with low on-chip and
off-chip metadata overhead.

We propose IvLeague, an architecture support for side
channel-resistant isolated integrity trees among dynamic do-
mains in secure processors. At a high level, IvLeague splits
the global integrity tree into many small statically-addressed
subtrees (called TreeLings). Metadata sharing is prevented
among TreeLings by keeping their roots on-chip. IvLeague
enables efficient runtime scaling of memory coverage (upto
entire system memory) by assigning and detaching TreeLings
to each individual domain. To allow flexible mapping of
physical pages to TreeLings, IvLeague integrates a hardware
mechanism that efficiently assigns and reclaims tree nodes for
data pages according to memory allocations and deallocations.
Additionally, IvLeague synergistically sets the number of
TreeLings and performs limited TreeLing expansion to support
a considerable number of IV domains (maximum 2'?) and
mitigate TreeLing starvation with low metadata overhead.

We further propose several optimizations on the basic
IvLeague framework (IvLeague-basic). Firstly, it has been ob-
served that workloads with small memory footprints typically
utilize a limited fraction of TreeLing leaf nodes. The first
optimization, IvLeague-Invert, shortens the path of integrity
verification from leaf to root by directly mapping data pages
to high-level intermediate nodes and gradually introducing
nodes from lower levels (i.e., intra-TreeLing extension) only
when all nodes in certain top levels are occupied. Invert’s top-
down allocation policy can significantly reduce the effective
TreeLing height and the corresponding integrity verification
latency. Secondly, real world workloads often access a subset
of pages with very high frequency (i.e., hotpages). Reducing
the integrity verification overhead for data accesses in hot-
pages can significantly improve overall system performance.
Accordingly, our second optimization, IvLeague-Pro, reserves
a sub-region of each IvLeague that is dedicated for map-
ping hotpages. IvLeague-Pro integrates a lightweight hotpage
tracker into the memory controller. When a page is designated
as a hotpage, IvLeague-Pro performs low-overhead runtime
relocation that maps the newly-identified page to a TreeLing
breach closer to the root. Similarly, untracked pages are
mitrated to the regular TreeLing nodes from the hot region
of TreeLing. Notably, both IvLeague-Invert and IvLeague-Pro
take advantage of the existing mechanism of dynamic physical
page-to-leaf mapping in IvLeague-basic, requiring minimal
additional hardware support.

We build a prototype of IvLeague in a cycle-level simu-
lator and extensively evaluate its performance and runtime
behavior across 16 multi-programmed workloads built from
SPEC2017, PARSEC and graph benchmarks [38], [39], [40].
Our evaluation indicates that IvLeague-basic provides strong
side channel security for integrity tree designs with reasonable
overheads ranging from 2.7% to 17.4% compared to the

insecure baseline that uses a globally-shared IV metadata.
More importantly, IvLeague-Invert enables a shorter effective
tree height for programs with low memory footprints, leading
to 5% speedup (on average) over insecure scheme for small
and medium workloads. Furthermore, IvLeague-Pro optimizes
all workloads with faster integrity verification for frequently
accessed pages, further offering up to 19% (14% on average)
performance gain over the insecure baseline. Finally, we
evaluate the scalability of IvLeague compared to static tree
partitioning, and observe that IvLeague achieves near-optimal
utilization of TreeLings (>99.5%) and scale well with work-
loads with various sizes of memory. IvLeague incurs modest
on-chip hardware logic and storage cost. Overall, IvLeague
shows the promise of designing performance-friendly secure
processors with enhanced microarchitecure security in the
future. In summary, the main contributions of this work are:

« We motivate the need to re-think the integrity verification
mechanism in secure processors for leakage protection,
and propose the first architectural support for isolated
domains of dynamic integrity trees—IvLeague. IvLeague
partitions the global integrity tree into small TreeLings
and associates them with IV domains on-demand.

e We enhance IvLeague with IvLeague-Invert that maps
data pages to TreeLing using a top-down extension mech-
anism to reduce the verification path length for among
workloads with smaller memory footprints.

o We further propose IvLeague-Pro, which optimizes the
integrity verification latency for frequently accessed
pages by placing them in reserved nodes of TreeLing.
IvLeague-Pro tracks hotpages at runtime and dynamically
migrates them closer to the root in the reserved region of
TreeLing to accelerate hotpage access with low overhead.

o We extensively investigate the performance of IvLeague
schemes and find IvLeague can provide strong side chan-
nel protection for security metadata, with an overhead of
2.7%-17.4% for IvLeague-basic compared to the insecure
scheme. Moreover, IvLeague-Invert and IvLeague-Pro
optimize the performance significantly, resulting in 5%-
19% speedup over the baseline.

¢ We perform scalability analysis of IvLeague against
static partitioning schemes. IvLeague demonstrates sig-
nificantly higher scalability compared to static partition-
ing for workloads with skewed memory footprints.

II. BACKGROUND
A. Microarchitectural Attacks and Defenses

Microarchitectural attacks are a form of information leak-
age threat where illicit communication is established through
the modulation of access timing to shared resources. These
attacks can materialize as covert channels, facilitating unau-
thorized data transmission between isolated domains, or as
side channels, where a malicious process illicitly extracts
secrets from a victim process. Previous studies have shown
timing channels exploiting various hardware resources in
modern processors [14], [16], [41], [42], [43], [44], [45],



[46], [47], [48], [49], [501, [51], [52], [53], [54], [55], [561,
[57], many of which are demonstrated on caches. Mainstream
cache attacks such as Prime+Probe [14] observes victim
activities through cache evictions. Shared-memory attacks
(e.g., Flush+Reload [13], Evict+Reload [11]) monitor secret-
dependent cache accesses via shared memory lines (e.g.,
shared libraries). Recent studies have unveiled various side
channels in TEE environments such as Intel SGX [3], [6], [12],
[28], [29], [58], [59], [60]. These attacks mostly utilize the
same attack vectors (e.g., conflicts on caches [43], [61]), but
with more sophisticated manipulations of victim’s execution
(e.g., replay and stepping [3]) enabled under the assumption
of privileged adversaries [6]. Distinctively, recent works [31],
[32] have identified that security metadata in secure pro-
cessors (i.e., SGX) creates new source of leakage beyond
the conventional sharing of hardware resources. In particular,
Metaleak [32] harnesses the multi-level sharing of integrity
tree metadata, and formulates highly accurate side channel
exploitation over metadata against real-world applications run-
ning in enclaves. Note that state-of-the-art microarchitectural
defenses typically employ resource partitioning or obfuscation
to either eliminate contention or disrupt the attacker’s timing
observations [21], [31], [35], [36], [37], [62], [63]. These
schemes are not designed to mitigate information leakage due
to the implicit sharing of metadata [32].

B. Secure Processors for Trusted Computing

State-of-the-art secure architectures minimize the trusted
computing base (TCB) by treating the processor chip as
the root of trust, and assuming off-chip components can be
compromised via physical attacks (e.g., data stealing/spoofing
and replay attacks [64]). Representative secure processors [31],
[65], [66], [67], [68], [69] employ three key mechanisms: i)
data confidentiality protection via counter-mode encryption, ii)
data authentication with message authentication codes, and iii)
data integrity (i.e., freshness) using integrity trees.

Data Encryption and Authentication. In counter-mode en-
cryption, per-block counters are used. A data block P (e.g.,
64B) is broken into n chunks (p; for i € [0,n — 1], 16B
each under 128-bit AES). When the processor writes P to
memory, the processor encrypts each data chunk (p;) with ¢; =
p; ® Enc(S, K) with key K. S is the encryption seed derived
from the physical address of p; and the counter associated with
P. The encrypted block C consists of the encrypted chunks
(¢; for i € [0,n — 1]). Counters are incremented after each
data write to ensure uniqueness of encryption seeds. To offer
data authenticity, the processor keeps an MAC (e.g., using
keyed-hash) over the data block using its block address and
encryption counter. The use of MAC can detect data spoofing
and splicing attacks [70], [71], [72].

Integrity Verification. For more advanced attack scenario
where attacker can arbitrarily replace certain data with an older
version (i.e., replay attack), secure processors use an integrity
tree to guarantee data freshness. A classical integrity tree is
constructed with tree nodes consisting of hashes (i.e., hash
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Fig. 1: Secure architecture mechanisms overview. Counters,
MAC and integrity tree metadata are stored in memory. A fixed
address mapping scheme (denoted as —) is used to locate the
counter/MAC block for a data block, and the tree node block
for a counter block (under a Bonsai Merkle tree).

tree) [31], [67], [68]. The hash is computed over a data block
(e.g., 64B to 128-bit hash), and multiple hashes (e.g., 8) form
a leaf node (tree memory block). The entire tree is built by
further hashing the tree node to form the parent nodes level
by level, eventually converging to the tree root. The number
of hashes in one tree node determines the tree arity. When the
processor reads from memory, the hashes are computed from
the leaf to the root, which is then compared with the root
on-chip. A mis-match indicates that the data in memory has
been tampered. Typical secure processors integrate metadata
caches that store partial integrity tree blocks on-chip. As such,
the verification and update of tree nodes (i.e., for data read and
write) only need to be performed up to the level cached on-
chip since the processor is trusted.

Integrity Tree Designs. The integrity verification procedure
can incur considerable overhead as the tree size (e.g., height)
grows. To reduce the verification overhead, state-of-the-art
designs propose Bonsai Merkle Tree (BMT) built over en-
cryption counters only (shown in Figure 1). As the MAC is
computed over both the data block and its counters, a matching
MAC with verified counter (using the tree) also proves the
freshness of the data block. Since the size of counter metadata
is significantly smaller than data, BMT can be considerably
smaller than the one built over both data and counters [65],
[66], [67], [73]. An alternative design to the hash tree is tree
of counters [65], [74], [75] where a tree node contains a
combination of counters (i.e., a large major counter shared
among memory blocks in a page and small minor per-block
counters) along with an embedded hash for the counters. When
a data write occurs, the counter tree is updated by incrementing
the minor counters. Intel SGX adopts a similar counter tree
design but uses monolithic counters (56-bit) instead [75]. Note
that regardless of the design choices, integrity tree is statically
constructed, under which the memory controller uses a fixed
mapping function to find the physical address of encryption
counters and integrity tree nodes for a certain data block, as
shown in Figure 1.

III. THREAT MODEL

We assume that an adversary attempts to exfiltrate sensi-
tive information from a victim process via microarchitectural
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Fig. 2: Exploitation of integrity tree block sharing.

attacks (e.g., timing side channels [9], [11], [13], [14]). The
victim runs a process protected by TEE (e.g., an enclave in
SGX). The adversary is a privileged attacker who can control
the operating system (OS) and can also execute programs
in enclaves. The running enclaves are considered mutually
distrusting, and the TEE runtime ensures isolation between
them [1]. Similar to existing TEE security studies [3], [6], [12],
[28], [29], [58], [59], [60], we assume that the system software
(e.g., OS/hypervisor) is untrusted and may be compromised
by the adversary. The attacker may employ advanced noise
filtering techniques, such as fine-grained program execution
stepping and replay [3], [60].

We assume that the processor is equipped with state-of-the-
art TEE support, including counter-mode encryption and BMT
for integrity verification, to thwart various off-chip attacks
(e.g., bus snooping and cold boot attacks [76]). To mitigate
timing channel leakage between two security domains, data
sharing between attacker and victim processes (e.g., through
shared libraries) is either audited [51] or completely dis-
abled [11], [13], [37]. Additionally, to defeat contention-based
side channels (e.g., Prime+Probe [14] on caches), we assume
that a state-of-the-art cache randomization scheme [19], [21],
[35] is employed. Finally, non-timing-based leakage, such as
attacks that exploit physical properties like electromagnetic
emanations [52] and power consumption [53], [77], [78], [79],
is considered out of scope.

IV. MOTIVATION: SIDE CHANNEL ATTACK ON SHARED
INTEGRITY TREE

Since the integrity tree is built over the entire memory as one
unit, it creates shared integrity tree blocks among data pages.
The integrity of counter blocks (and hence their corresponding
data blocks) is verified through a certain path of nodes in the
integrity tree. Shared integrity tree blocks are the ones with
tree nodes common between two (or more) verification paths,
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Fig. 3: Traces of attacker observed latencies to access P} and

P?. The inferred secret value (e;) is highlighted in red.

as illustrated in Figure 2a. Consecutive data pages share the
same lower-level tree blocks (i.e., leaf), and the higher-level
blocks feature sharing across larger regions of the data pages
(Figure 1). As shown in Metaleak [32], an adversary can
utilize its own data page to share an integrity tree node with the
victim domain and launch shared-memory cache attacks [32]
(i.e., similar to Evict+Reload [11]).

Figure 2b provides a high-level overview of this attack.
Specifically, for a given victim page P, in secure memory
(e.g., the EPC in SGX), the attacker can allocate a physical
page P, such that P, and P, share a common tree node block
(e.g., N? in Figure 2a) used for integrity verification. The
attacker can then indirectly infer the victim’s access to P,
by observing the latency of their own access to P,, which
is carefully set to trigger the traversal of the integrity tree
up to N°. A shorter (or longer) access latency, caused by
verification, indicates whether the victim has (or has not)
accessed P, due to a hit or miss of the shared N® in
the metadata cache. This exploitation shares some similarity
with the Flush+Reload attack [13], but instead manipulates
metadata. Figure 2b illustrates the attack steps. The attacker
first performs metadata eviction of N?® (and its child nodes)
@', and then infers the caching state of N® based on the
access latency to P, @. If the victim’s access to P, depends
on a secret, this secret can be exfiltrated by the attacker.

We demonstrate a real-world attack on systems equipped
with Intel SGX processors. The attack targets the vulner-
able modular exponentiation algorithm in the OpenSSL li-
brary [80], where a bit in the secret exponent e determines
access patterns to the square (sqr) and multiplication (mul)
functions. In this scenario, the victim is running a crypto-
graphic application inside an enclave. Specifically, we launch
the attack on an Intel i7-9700K processor, which uses tree-
based integrity verification for enclave data [75]. Intel SGX
employs a 4-level and 8-ary counter tree. A 64B tree node
block includes eight 56-bit monolithic counters and a 64B
hash. The leaf level of the tree covers eight encryption counter
blocks (each containing eight 56-bit monolithic counters corre-
sponding to data pages). Given the deterministic design of the
integrity tree, the attacker can locate pages that share tree node
at any specific integrity tree level with certain targeted EPC
page (e). The attacker runs a malicious enclave and selects
two pages, P} and P?, which are empirically set to share

Eviction is necessary as there is typically no ISA support for metadata
flush, in contrast to c1flush for data.
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tree node blocks at the second level (starting from the leaf)
with victim pages PS% and P™!, respectively. We launch
the metadata-based attack following the steps illustrated in
Figure 2b. Figure 3 shows the attacker-observed access latency
to both P! and PZ, which correlates with the victim’s access
to sgqr and mul. Overall, we achieve 91.6% accuracy in
recovering the 2048-bit RSA private exponent from a victim
enclave running in SGX.

Uniqueness of the Metadata-based Side Channel. This
attack reveals a new attack vector affecting secure processors.
Specifically, the inherent sharing of IV metadata fundamen-
tally breaks the isolation required for effective side channel
protection among security domains [32]. More importantly,
although the demonstrated attack exploits caches, existing
secure cache defenses, such as partitioning [21], [35], [36], are
ineffective. This is because mainstream cache defenses assume
that the attacker and victim do not share writable data. Such
sharing is feasible through implicit metadata sharing, which
can lead to cache coherence issues with cache partitioning.
Essentially, the root cause of this vulnerability is the IV meta-
data mechanism, which necessitates modifications to secure
architectures to enhance microarchitecture security.

V. DESIGN OBJECTIVES OF IVLEAGUE

In this section, we present the design space for architectural
techniques to defeat integrity verification (IV) metadata-based
leakage. We discuss the challenges and limitations ranging
from the straightforward static partitioned metadata designs to
fully dynamic integrity tree schemes (illustrated in Figure 4),
and motivate the key design principles for IvLeague.
Completely Static Integrity Trees: A simple approach to
enable isolation of IV metadata is to statically partition the
global tree into a fixed number of subtrees. At runtime, each
enclave domain is assigned to a subtree. Every subtree covers
a pre-defined chunk of the physical memory. Since static
addressing is used for locating tree nodes for data reads (as
in the default global tree), such approach does not introduce
additional per-domain tree construction and node management
overhead. However, it has several key drawbacks: Firstly, it
cannot easily scale with a varying number of security domains
at runtime without limiting its utility (e.g., coverage of individ-
ual subtrees); Secondly, static partitions cannot accommodate
workloads with larger memory footprints and, on the other
hand, can lead to unused metadata (e.g., leaf nodes) for
workloads with smaller memory requirements. Lastly, such
scheme relies on the OS to strictly allocate physical pages

for each domain from its designated memory chunk, which is
problematic as the OS is typically not trusted with the TEE
threat model.
Per-domain Dynamically-constructed Integrity Trees: Se-
cure processors can alternatively maintain fully dynamic in-
tegrity trees (Figure 4b). In this scheme, each domain hosts
its own tree and is able to grow and shrink the tree size
(i.e., coverage of verified memory) according to the dynamic
memory usage of the workload. The addressing for child
nodes to their parent and memory blocks to their leaf node is
dynamically determined (e.g., via lookup tables) by the secure
hardware without OS intervention. This design promises max-
imum flexibility in terms of the number of runtime domains
and the size of each domain, but unavoidably brings substantial
metadata maintenance overhead. For instance, verifying the
integrity of a data block involves a memory lookup to find
the corresponding leaf node, followed by multiple lookups to
locate the tree node from leaf to root of the tree. Such memory
indirection can impose significant slowdown on the already
complex tree traversal for integrity verification. Moreover,
management of tree nodes (e.g., allocation and reclamation)
by hardware could introduce non-deterministic runtime com-
plexity, impacting the critical path of program execution.
Based on the above discussion, a practical side channel-
resistant IV mechanism should incorporate the following de-
sign considerations: i) support for a sufficient number of
isolated IV domains, which can be dynamically constructed
and destroyed as needed; ii) ability to efficiently adjust the
integrity coverage area in each domain to match the runtime
memory footprint of workloads; iii) low-overhead techniques
to manage the tracking and mapping of tree nodes at runtime.
Lastly, though less obvious, given a finite budget for IV
metadata (e.g., storage), the secure IV mechanism should avoid
tree node starvation during multi-domain execution, where no
available tree nodes can be used for newly allocated data
pages, even when system memory has not been exhausted.
It can be seen that the aforementioned design choices are
complementary in terms of fulfilling the properties, but neither
of them meets all the requirements. With this observation, our
work aims to design an isolated dynamic integrity verification
framework that offers high efficiency in performance and
effectiveness in leakage prevention by employing an advanced
hybrid scheme.

VI. IVLEAGUE DESIGN
A. Design Overview and Challenges

The key principle of IvLeague is to maintain many tiny and
isolated integrity trees that have no shared nodes, referred
to as TreeLings. TreeLings serve as the basic allocation
units for each IV domain, and TreeLing roots are kept on-
chip. Moreover, the nodes within a TreeLing are statically-
addressed, and hence the leaf to root node traversal does
not require memory indirection. IvLeague tracks the mapping
between the data page and the TreeLing leaf node in the Leaf
Mapping Metadata (LMM), which is embedded in the page
table. This allows the mapping of arbitrary physical pages
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to TreeLings. Note that in BMT, a data page is mapped to
a tree node when its counter block is assigned and directly
verified with the tree node. A per-TreeLing Node Free-list
(NFL) maintains the available leaf nodes that can be assigned
to new page allocations. Figure 5 shows an overview of the
IvLeague architecture. The high-level operation of IvLeague
is illustrated in Figure 6. When a new page is allocated to
an IV domain (@), an available leaf node is assigned to the
page from the NFL. The LMM is updated to associate the
leaf node with the corresponding page frame (@). During
integrity verification, the leaf node for the physical data page
is retrieved from LMM (@), without requiring additional
indirection. To enable runtime resizing of IV domain coverage,
IvLeague incorporates an IV Domain Controller to dynami-
cally map/unmap TreeLings within IV domains.

There are several design challenges that must be addressed
to provide efficient and effective side channel protection for
integrity verification metadata. Firstly, since the number of
TreeLings is limited and the availability of TreeLing nodes is
crucial for program data page allocation, the leaf nodes in each
TreeLing must be utilized efficiently to avoid under-utilization
within the TreeLing (Section VI-C1). Effective intra-TreeLing
management is required to avoid premature TreeLing exhaus-
tion caused by poor utilization. This is challenging because
IvLeague performs dynamic mapping between pages and
TreeLing nodes, requiring an additional hardware-controlled
allocation policy for TreeLing nodes (Section VI-C). Secondly,
the configuration of TreeLings (i.e., the size and number of
TreeLings in the system) must be chosen carefully to prevent
TreeLing starvation, where small-footprint domains occupy the
majority of TreeLings, leading to a TreeLings shortage while
system memory is still available. Inter-TreeLing management
must consider these factors to select appropriate TreeLing
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configurations and allocate TreeLings to domains dynamically
during runtime (Section VI-D). In the following sections, we
present how each of these challenges can be addressed.

B. Definition of TreeLing

TreeLings originate from the split parts of the global in-
tegrity tree, each having a very small memory coverage (e.g.,
a few to tens of MBs). In the simplest form, a TreeLing is a
subtree with a node at the I*” level of the global tree as its
root. Apparently, assuming a total number of m tree nodes
in level [, there will be a set of m TreeLings, denoted as
{mli € [1,2,...,m]} (See the illustration in Figure 6). To
offer the isolation guarantee, the roots of TreeLings and any
level of nodes above are kept on-chip, which prevents sharing
of the nodes in memory between any pair of TreeLings (e.g.,
7; and 7;). Such an isolation can be achieved using various
ways, including locking nodes on cache or hosting them on
dedicated on-chip buffers. Particularly, IvLeague reserves a
dedicated space in the IV metadata cache via way partitioning
to hold all TreeLing roots.

C. Intra-TreeLing Management

1) Dynamic Mapping of TreeLing Nodes: When a new page
is allocated to a domain, an available TreeLing node must
be associated with the page. Traditional secure architectures
rely on static mappings between a page and integrity tree leaf
nodes. In a scheme with dynamic mapping between the data
page and the integrity tree leaf, leaf node allocation requires
scanning through all the leaf nodes in a TreeLing to find
an available one (i.e., TreeLing leaf node which is not yet
assigned to any data pages). This introduces a considerable
runtime overhead of O(N), given the total number of leaf nodes
N, which is in the critical path of data page allocation. On the
other hand, simple approaches, such as consecutively assigning
tree leaves in a predetermined direction, are incompatible with
runtime page deallocation activities.

IvLeague integrates a hardware-based mechanism to per-
form TreeLing node mapping at runtime with the additional
in-memory metadata storage, NFL. Specifically, NFL is a
per-TreeLing structure that tracks TreeLing node availability
during runtime. Each NFL entry includes two fields: a tag
for the address of a TreeLing node block, and an availability
vector tracking the available slots in this node where counter
blocks can be attached (e.g., slots for hashes). NFL maintains
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one entry for each TreeLing leaf node, and multiple entries are
stored in one memory line. A head register is kept to point
to the current NFL block under operation. Figure 7 illustrates
the design and high-level operations of node mapping using
NFL. When a new TreeLing is assigned to an IV domain, all
the tags in its NFL are initialized with the corresponding node
block addresses, the a vectors are reset, and the head is set
to the first NFL block. Upon requests for node mapping and
unmapping, IvLeague accesses the current NFL block to either
find an available attaching slot (for page allocation) or add
tracking of reclaimed slots (for page deallocation). To reduce
the overhead due to NFL memory reads, an on-chip CAM
buffer (NFLB) is maintained that caches the most recently
accessed NFL blocks. Figure 8a illustrates the organization of
the NFL in memory. Figure 8b-8f show the logical view of
the NFL reflecting the changes made through NFLB due to
the mapping and unmapping of data pages.

NFL Operations for Page Allocation. Upon a new memory
page allocation, if the currently active NFL block pointed by
the head register (B;) has an available slot, the new page is
mapped to that slot (Figure 8b). Here, 7 represents the currently
active NFL block in the NFLB. The address of B; is stored in
the head register. Once B; is fully mapped, the head register
is moved to the next NFL block, B;;; (Figure 8c). Since the
head register is advanced only when all previous NFL blocks
are fully utilized, this design ensures that IvLeague can always
locate an available slot for new page allocation with at most
one NFL read (i.e., the next NFL block). As a result, IvLeague
with NFL offers a maximum of O(1) overhead for locating an
available slot during page allocation. Note that if B; already
contains an available slot, which would be the common case
for most of the page allocations, the page to TreeLing node
mapping via NFLB incurs no additional overhead.

NFL Operations for Page Deallocation. During memory
page deallocation, the o vector of the corresponding TreeLing
node block (V) is updated to reclaim the unmapped node slots.
Note that IvLeague performs an in-place update of NFL entries
for TreeLing nodes with updated availability. Particularly,
when node block N has an unmapped slot, IvLeague first
checks the entries in the current NFL block. If the entry
for node block N exists (i.e., a tag match), this entry is
directly updated to track the newly available slot (Figure 8d).
Otherwise, instead of scanning sequentially through NFL to
find the NFL block that potentially tracks N’s availability,
IvLeague attempts to re-use one entry into the current NFL
block with full slot occupation (e.g., N4 in Figure 8e). If

vA[ 47:29] 38:30 [ 29:21 ] 20:12 [ | vA[ 47:29] 38:30 [ 29:20 [ 19:12 [ |

PL4 PL3 PL2 PL1 PL4 PL3 P+2 PL1
Ry ——

A Flag 512
— ntries

(a) Original page table design

8

2
10 .
oy P
«—»!|PTR. pALeaf Flagl 256
_ : ntries

(b) IvLeague page table with leaf ID

Fig. 9: Modified page table design in IvLeague.

no such entry is found, IvLeague will move head to the
previous NFL block (B;_1), and reuse an entry to track [NV
there (Figure 8f). Note that the management of nodes in NFL
ensures that all previous NFL blocks (before the location at
head) are fully mapped. As a result, IvLeague only needs
to move backwards one NFL block to find an entry for the
tracking of a TreeLing node block with page deallocations.
In cases where the head points at the very first NFL block
in the current TreeLing, IvLeague can utilize the NFL from
the previous TreeLing assigned to the same IV domain. This
cross-TreeLing maintenance of available node slots allows
IvLeague to efficiently track attachable IvLeague nodes with
high utilization as data pages are allocated and freed.

2) Management of Leaf Mapping Metadata (LMM):
IvLeague stores the mapping between PFNs to TreeLing leaf
nodes in the page table. As illustrated in Figure 9a, the page
table is a multi-level radix-tree structure, where each level is
indexed by a portion of the virtual address bits and contains
pointers to the data storage of the subsequent level. The last
level contains the PFN corresponding to the virtual address
(i.e., page table entry or PTE). IvLeague extends the PTE with
an additional field to store the address of the leaf node mapped
to the current page. Specifically, as shown in Figure 9b, each
extended PTE reserves an additional 64 bits for the leaf ID.
Due to such extension, each PTE page in IvLeague contains
a reduced number of 256 PTE entries. The collection of the
additional leaf IDs embedded in the page table is called Leaf
Mapping Metadata, or LMM. When a page table walk is
triggered, the LMM is separated from the page table data
and stored in the LMM cache within the memory controller
(Figure 5). When a TLB entry is evicted, the LMM cache
entry is also evicted to maintain consistency.

D. Inter-TreeLing Management

1) Allocation of TreeLings to 1V Domain: IvLeague man-
ages the runtime allocation and deallocation of TreeLings
to IV domains on-demand. When all leaf nodes within a
TreeLing are fully occupied (i.e., no available « entries in



Fig. 10: Memory utilization in skewed allocation correspond-
ing to number of TreeLings. Left: New allocation request from
D, is failed due to TreeLing starvation, although memory is
available; Right: New allocation request from D; is successful
for the same memory distribution.
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NFL), a new TreeLing is assigned to the domain. Specifi-
cally, IvLeague integrates an on-chip FIFO, called Unassigned
TreeLing (Figure 5), to keep track of the currently unallocated
TreeLings. Additionally, an Assignment Table (Figure 5) is
used to track domains and their associated TreeLings. Note
that these structures are only accessed during the TreeLing
assignment process. We set the maximum number of IV
domains supported to 2'2, which aligns with the limit on
the number of contexts supported by hardware (i.e., Intel
processors use 12-bit process-context IDs [81]).

2) Addressing TreeLing Starvation: Since IvLeague allo-
cates IV tree nodes to security domains in the unit of TreeLing,
there are chances when no TreeLing is available to attach
newly allocated data pages (i.e., exhaustion of IvLeague before
depletion of main memory). Figure 10a illustrates one such
scenario with skewed memory footprints among domains.
Provisioning additional TreeLings could mitigate this issue,
as shown in Figure 10b. Particularly, the number of TreeLings
needed to ensure full system memory coverage under the
worst-case memory usage patterns across domains®> can be
modeled as: #7 = (D — 1)+ w, where D is the
maximum number of IV domains to support, M is the total
system memory, and S is the TreeLing size. Apparently, .S and
#T are inversely related given fixed D and M. When S is set
to the smallest (e.g., covering one 4KB page), the combined
coverage of all TreeLings is the same as M, indicating that no
wasteful metadata is provisioned in memory. However, such
minimal TreeLing size means that all leaf nodes have to be
kept on-chip, which is impractical. Alternatively, when tuning
#7 to the theoretically minimal (i.e., D), the on-chip storage
for TreeLing roots is minimized. Unfortunately, each TreeLing
has to be large enough to cover the whole memory, bringing
prohibitively high memory metadata storage overhead. Note
that real-world workloads typically do not exhibit the worst-
case behavior. As a result, TreeLing starvation can be empir-
ically avoided by using an efficient tradeoff between on-chip
and memory metadata overhead. In practice, we first determine
#7 in the system by identifying the level of the global tree
nodes kept on chip, with reasonable storage overhead (e.g.,
according to IV metadata cache sizes). We then analyze the

>The worst-case memory distribution occurs when all but one domain
occupy only one data page, and the remaining domain occupies the rest of
the available system memory.
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Fig. 12: IvLeague-Invert: a) allocation of page without intro-
ducing next level; b) operation to convert a slot to a parent
slot; ¢) LMM update procedure after the conversion. Here H}!
represents the address of the i*" hash slot of the [** level of
the tree. p is the is_parent flag and [i] denotes the hash
corresponding to the attached page (PFN 7).

size of each TreeLing S, for this specific #7 using the
previous equation. Particularly, under IvLeague, to minimize
the chance of starvation, the subtree (i.e., each of the #7 equal
splits from the global tree) is expanded with a limited number
of levels (e.g., one to two) to form a TreeLing. We provide a
detailed analysis of the selection of #7 and S and their impact
on overall system performance in Section X-C.

VII. IVLEAGUE OPTIMIZATIONS

A. IvLeague-Invert: On-demand Extension of TreeLing

IvLeague-basic allocates pages at the leaf nodes of the
tree only (Figure 11a). This can result in unnecessarily long
integrity verification paths for programs with small memory
footprints (i.e., the TreeLing is underutilized). Note that the IV
operation overhead can be substantially reduced if tree nodes
mapping to data pages can be collapsed towards the root com-
pactly and expanded later within the TreeLing as more nodes
are needed. Traditional statically-mapped global integrity tree
does not allow tree node consolidation and extension, as only
leaf nodes are mapped to data pages. Prior works [68] propose
a pruning mechanism that restructures portions of the tree to
enable such optimization in classical integrity trees. However,
this approach incurs additional overhead for dynamic tree
reconstruction. Interestingly, IvLeague’s LMM structure in
IvLeague naturally supports the use of intermediate nodes as
leafs without requiring additional hardware support. Based on
this observation, we propose an optimization over IvLeague
(IvLeague-Invert) that enables data page to intermediate node
mapping, shortening the path from leaf to root. As shown in
Figure 11b, when a page is accessed, the LMM bookkeeps
the address of the corresponding TreeLing node, which can
be either a leaf or an intermediate node. Since TreeLing itself
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Fig. 13: High-level overview of IvLeague-Pro scheme.

is statically addressed, determining the path to the root for any
node in the tree does not require indirection.

To support the assignment of intermediate nodes as leaf
nodes, NFL is modified to track all nodes of TreeLing by
placing the availability entries in NFL for TreeLing nodes
level by level in a top-down manner. Upon a new mapping
request, NFL first assigns available slots from the higher levels
of TreeLing (ie H? in Figure 12a). When the NFL head
reaches the last node block at the current level, IvLeague-
Invert extends the effective tree by using nodes in the next
level. This is achieved by first converting a tree node slot
from the current level to a parent slot, followed by mapping
pages to the corresponding child slots in the lower level. As
shown in Figure 12b: @ IvLeague-Invert first copies the hash
content of the selected HZ slot into the first available slot
of its child TreeLing block as determined by NFL (i.e., H&).
This ensures that the integrity tree metadata (i.e., hash) for
H is preserved when it becomes a parent slot. @& Afterward,
new mapping requests are served starting from the subsequent
available slots at this level (i.e., the Hi slot in the H'! level).
To track whether a slot represents a parent or a leaf, a 1-
bit is_parent flag (p) is reserved from each 64-bit hash
slot in the TreeLing node. This conversion does not incur
additional overhead, as H; would normally require its parent
(H?) for verification. Furthermore, LMM does not need to be
updated immediately. As shown in Figure 12¢, when the LMM
is accessed after conversion, IvLeague-Invert first locates the
old leaf Hg using the LMM (@) and detects that it has been
converted into a parent. The new leaf for the page is now
the first slot of HZ’s child, H} (®). Once the non-parent
slot for the page is found, the LMM is updated to reflect
the new leaf (®). IvLeague-Invert enables dynamic extension
within a TreeLing as the memory footprint of a domain grows,
which can significantly reduce integrity verification overhead
by decreasing the number of levels to be traversed.

B. IvLeague-Pro: Optimization for Frequently Accessed Pages

IvLeague-Basic maintains the same integrity verification
length for all memory pages, regardless of their access fre-
quency (similar to traditional secure architecture). However, in
real-world workloads, a small portion of memory is accessed
very frequently (i.e., hotpages) [68], [82], [83]. IvLeague-Pro
further optimizes system performance by prioritizing integrity
verification for these hotpages, placing them closer to the
TreeLing root (Figure 13). A hotpage is determined by its ac-
cess count (AC};) divided by the accumulated access counts of
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Fig. 14: IvLeague integration with hotpage detection module.

all pages (3_;_, AC)). Particularly, Hotness(i) = %
quantifies the relative frequency of access to page 3. ”

Figure 14 illustrates the IvLeague-Pro mechanism. Specif-
ically, a small sub-region of the TreeLing (denoted as 7po¢)
is reserved from the rest of the tree (Treq). Thot 1S Only used
for mapping hotpages. IvLeague-Pro discards the last level of
nodes in 75,4, thereby shortening the longest path compared
to the original 7,.4. To support such scheme, two NFLs are
maintained: a smaller one for 7, (NF L) and a larger
one for 7.y (NFL,e4). Figure 14b demonstrates the use
of an n-entry access frequency tracking table integrated into
the memory controller, serving as a low-overhead hotpage
detector. When a page is accessed, the corresponding entry in
the tracker is updated. In case a new entry is needed and there
is no free table entry, the entry with the smallest counter value
is replaced. When a counter reaches a predefined frequency
threshold, the associated page is migrated to the hotpage
region (Figure 14a). This is done by first finding an available
TreeLing node/slot from N F'L,..,. The hash is then copied to
the new TreeLing slot in (740¢), and the page to leaf mapping
is updated in LMM. All counters within the table are cleared
after a predefined fixed interval. When a hotpage becomes
inactive (i.e., cleared from the tracker), the corresponding node
in 7p4; is migrated back to 7,..4. This procedure is similar to
the hotpage migration, with the distinction that NF'L,., is
used to identify the available node. Note that the efficacy of
the n-entry counter in IvLeague-Pro depends on the access
striping of hotpages (i.e., the number of unique regular pages
accessed between the accesses to the same hotpages) to be
less than n. For more intricate access patterns, IvLeague-
Pro can seamlessly integrate more advanced hotpage detection
mechanisms [82], [83], [84], [85].

VIII. SECURITY ANALYSIS OF IVLEAGUE

Protection against Side Channels Exploiting Metadata
Sharing. The root cause of the metadata-based information
leakage [31], [32] is sharing the IV metadata in memory
across domains. IvLeague fundamentally eliminates IV meta-
data sharing because: @ IvLeague assigns each TreeLing to a
unique domain; @ no nodes are shared among TreeLings, and
©® the roots of active TreeLings are kept on-chip. Therefore,
IV operations in one domain cannot influence the timing of
another, which indicates strong protection against the shared
metadata-based leakage [32]. By default, IvLeague locks all
TreeLing roots (i.e., one specific level of the global integrity
tree) to cache during system power cycle. This ensures no
leakage exists based on runtime TreeLing allocation activities.



Hardware Configurations

Processor 8 000 x86 Cores

L1 / L2 Cache Private, 32KB, 8-way / Private, 1IMB, 4-way
L3 Cache Shared, 8MB, 16-way, 40-cycle hit

Crypto engine 20-cycle AES latency

Mem. Ctrl. 64 RD & WT queue, FR-FCFS, open-row

8-way 256KB counter & Tree cache
32GB, dual channel, 2 ranks/channel
LMM cache: 16-way 204KB

NFLB: 2 entries per-domain

TreeLing size: 64MB; # of TreeLing: 4K

Secure Architecture Configuration

Main Memory

IvLeague Params.

Enc. Counter
MAC

Integrity Tree
Metadata Cache

64-bit major, 7-bit minor counter

8 byte per block

8-ary Bonsai Merkle Tree

8-way 256KB counter and integrity tree caches

TABLE I: Architecture configurations.

Alternatively, a dynamic locking mechanism can be used
where only the roots of allocated TreeLings are kept on-
chip, which can reduce the runtime cache pressure. Prior
studies have shown that dynamic resource allocation can po-
tentially exfiltrate coarse-grained information across domains
by observing the victim domain’s resource needs [62], [86].
Note that recent works show that information leakage can be
bounded to a low level with principled partitioning schemes
(e.g., [62]). Overall, IvLeague can effectively eliminate the
metadata sharing side channels by design.

Security Implication of Architecture Support for IvLeague.
Microarchitectural components shared across domains can be
exploited to carry out side channels without memory sharing
(i.e., conflict-based cache attacks). Though not demonstrated
in prior studies, such attacks (e.g., Prime+Probe) can be
potentially applicable on the IvLeague secure processor caches
(e.g., metadata and LMM cache). Note that IvLeague is
specifically designed to thwart information leakage via shared
metadata across security domains [32], which represents a
fundamentally new attack vector that cannot be addressed with
existing defense techniques (see Section IV). Moreover, secure
cache techniques [35], [36], [63], [87], [88], [89], [90] are
orthogonal and can be integrated into secure processors to
form a baseline with classical side channel protection, upon
which IvLeague is built to offer comprehensive side channel
security. IvLeague utilizes dynamic mapping of the data pages
to TreeLing leaf nodes through indirection from LMM. This
mapping process is managed entirely by the hardware in
the memory controller, preventing manipulation by off-chip
attackers or malicious privileged software, similar to how
virtual address to EPC frame mapping is protected against
page table manipulation by a malicious OS in SGX. Finally,
the in-memory NFL and NFLB are per-domain structures,
which are not exploitable for cross-domain leakage.

Cryptographic Security of IvLeague. IvLeague maintains
the same-level of cryptographic security assurance as in
conventional secure architectures [65], [67], [68], [74], [75].
Specifically, IvLeague preserves the original physical structure
of the integrity tree but dynamically splits the tree using
TreeLings by sustaining an intermediate level of the tree in the

S-1: gce-cactuBSSN-perlbench-deepsjeng
S-2: mcf-omnetpp-lbm-xalancbmk

S-3: bwaves-lbm-x264-cactuBSSN

S-4: perlbench-xalancbmk-gcc-omnetpp
S-5: mcf-bwaves-deepsjeng-x264

S-6: omnetpp-gee-mef-perlbench

M-1: dedup-ferret-blackscholes-bodytrack
M-2: canneal-swaptions-vips-ferret

M-3: freqmine-fluidanimate-canneal-facesim
M-4: vips-swaptions-dedup-ferret

M-5: blackscholes-bodytrack-freqmine-fluidanimate
M-6: dedup-facesim-bodytrack-swaptions
L-1: bfs-pr-bc-sssp

L-2: bfs-pr-cc-tc

L-3: be-sssp-ce-te

L-4: sssp-pr-be-tc

Small (SPEC2017)

Medium (PARSEC)

Large (Graph)

TABLE II: List of multi-programmed workloads.

cache. Integrity verification is performed from the direction
of leaf to root, ending at the first node cached on-chip.
IvLeague utilizes the same arity and hash size configuration
as in the global integrity tree. Hence, it offers the same level
of cryptographic security as the baselines.

IX. EXPERIMENTAL SETUP

IvLeague Architecture Configurations. We implement and
evaluate IvLeague in the gem5 simulator [91] under full-
system simulation with Linux kernel 4.9.92. We first imple-
ment the state-of-the-art secure processor architecture [67]
(baseline), which adopts an 8-ary Bonsai Merkle Tree.
We simulate an eight-core out-of-order processor with
dual-channel 32GB main memory. To enable protection
against conflict-based attacks, the baseline is integrated MI-
RAGE [35], a representative randomized cache technique in
the shared data cache (i.e., LLC) and metadata caches (i.e.,
counters and IV metadata). We implement the three variants
of IvLeague on top of baseline, including IvLeague-Basic,
IvLeague-Invert and IvLeague-Pro. Note that for IvLeague
schemes, the MIRAGE defense is additionally applied on
the LMM cache. IvLeague schemes use a 8K-entry LMM
cache and 2-entry NFLB per-domain. Each TreeLing is a
4-level subtree that covers 64MB of data. Also, under the
evaluated system memory and TreeLing configuration, the
global integrity tree height is 6-levels in baseline and 7-
levels for all IvLeague schemes. To keep TreeLing roots on-
chip, the processor performs locking of the first three levels
(excluding the global root) in the IV metadata cache. Notably,
this effectively makes Level 3 nodes the roots for TreeLings.
IvLeague-Pro uses a per-domain 128-entry access frequency
tracker with 8-bit counter for hotpage prediction. Table I
illustrates the key architecture configurations for IvLeague.

Workload Configurations. We configure 16 multi-program
workloads assembled using reasonably high memory intensive
benchmarks from SPEC2017 [38], [92], [93], PARSEC3 [39],
and the GAP Benchmark Suite [40]. Based on the combined
memory footprint of each workload, we classify them based
on their memory footprints as small (< 5GB), medium
(b — 10GB), and large (> 10GB). For the SPEC2017 and
PARSEC3 workloads, we perform simulations using reference
and native input sizes, respectively. For GAP benchmarks, we
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use twitter-large (SGB) graphs [94]. Each workload consists
of four individual benchmark processes (single-threaded in
small, multithreaded with two worker threads in medium
and large), each process operating as separate IV domains.
Multiple threads within the same process are grouped in the
same IV domain. In the simulation setup, we configure gemS5
to skip the initial 2B and 5B instructions for small/medium
and large workloads, respectively, and collect statistics from
detailed simulations over /B instructions for each core. Ta-
ble II provides detailed configurations of all workloads.

X. EVALUATION
A. Performance Evaluations

1) System Performance Analysis of IvLeague Schemes: To
comprehensively evaluate IvLeague, we analyze the overall
system performance of various IvLeague schemes. Figure 15
illustrates the weighted IPC [95] for each IvLeague scheme,
normalized to the default secure architecture with global in-
tegrity tree (i.e., Baseline). We observe that the basic IvLeague
scheme (IvLeague-Basic), which features dynamic allocation
of TreeLings, demonstrates a range of performance degrada-
tion compared to Baseline, including a modest 2.7% to 5.5%
for Small and Medium workloads and 17.4% for Large on
average. The performance impact with IvLeague-Basic comes
mainly from additional memory accesses needed for leaf
node management (i.e., using NFL. and LMM), and additional
accesses to tree nodes due to the expansion of the global tree
(i.e., one additional level). These additional memory accesses
can prolong the integrity verification latency. Note that such
overhead is relatively more pronounced in the Large workloads
with larger memory footprints, which can lead to higher
misses in the IV metadata cache. The performance overhead
of the basic scheme is mitigated with IvLeague-Invert, which
reduces the length of the IV path by enabling the mapping
of data pages to intermediate IvLeague nodes. Compared
to IvLeague-Basic, IvLeague-Invert achieves an average of
10.9%, 8.8% and 3.3% IPC improvement over Small, Medium
and Large workloads, respectively. Importantly, these reflect
performance gains of 8.2% for Small, 3.4% for Medium, and
a reduced overhead of 13.2% for Large over the insecure
baseline. Furthermore, by applying the dynamic positioning

of the nodes of hotpages closer to TreeLing roots, IvLeague-
Pro consistently demonstrates performance speedup up to 19%
(14% on average) across all workloads over Baseline, while
preventing the metadata-based leakage in Baseline. Overall,
IvLeague shows the promise of architecting secure processors
resistant to side channel leakage without adversely impacting
performance.

2) Integrity Verification Path Length with IvLeague:
IvLeague ensures that the TreeLing roots are kept on-chip
to enable metadata isolation. Since memory data on-chip are
trusted, the height of TreeLing significantly influences the
integrity verification path for a data block read. We profile
the runtime integrity verification transactions for data reads
(i.e., the TreeLing blocks read and verified up to a cached
node). Figure 16 shows the average path length for each
benchmark, computed across all workloads that contain it.
We observe benchmarks with larger working sets (e.g., graph)
show longer verification paths, due to higher metadata cache
pressure. Under IvLeague-Basic, benchmarks within Small and
Medium workloads have average path lengths of 1.31 and 1.52,
respectively, which are shorter than those of Baseline (1.42 and
1.57). This reduction occurs because locking tree nodes from
the TreeLing root level improves the locality of top-level nodes
for data reads that require long tree traversals. With the use
of intermediate nodes, IvLeague-Invert reduces the average
length to 1.15 and 1.27 for Small and Medium. For Large
workloads, IvLeague-Basic and IvLeague-Invert incur slightly
longer verification path (2 and 1.92) over Baseline (1.85),
which are also evidenced from the negative performance
impact shown in Figure 15. Note that workloads with large
memory introduce higher metadata cache access conflicts,
under which the overhead due to the static TreeLing extension
(see Section VII-A) becomes more influential. Finally, with
the integration of IV optimization for hotpages, IvLeague-
Pro decreases the average path to 1.08, 1.10, and 1.22 for
Small, Medium, and Large workloads, leading to performance
improvement across all workloads.

3) Runtime Efficiency Analysis of IvLeague Components:
We investigate the effectiveness of IvLeague design and the
overheads corresponding to various IvLeague operations:
Effectiveness of NFL Design in IvLeague. To understand the
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Fig. 18: NFLB hit rate for all workloads.

effectiveness of NFL, we replace it in IvLeague with a naive
design that uses per TreeLing bit vectors. Specifically, each
bit is statically mapped to a leaf node in TreeLing to indicate
availability (e.g., ‘1’ for occupied and ‘0’ for free). Once head
register points to the last active position among all bit vectors,
and TreeLing node assignment is made to the first available
node from the head. In case of deallocation, the head moves
back to the freed node. We implement two different variants of
such scheme: BV-v] and BV-v2. BV-v1 reacts to deallocations
of nodes mapped to the currently active TreeLing (i.e., head
not moving across TreeLings), and performs search (sequential
scan) for free nodes in the current IvLeague only. In contrast,
BV-v2 tracks node reclamation across TreeLings, and hence
a cross-TreeLings search of free nodes is potentially needed
for the allocation request. We run the same set of workloads
in IvLeague (i.e., IvLeague-Pro version) with BV-vl and BV-
v2 and compare their performance with the NFL mechanism.
As shown in Figure 17a, both schemes incur substantial
performance overheads due to the expensive free node search
operation, which delays normal data reads. Overall, there is a
33% to 47% performance loss in BV-v2 over baseline, com-
pared to 6% to 18% performance gain in IvLeague (with NFL).
Moreover, while BV-vl performs slightly better than BV-v2
(i.e., 22% degradation over Baseline), it fails to accommodate
leaf node mapping (for page allocations) in all Medium and
Large workloads, as TreeLings quickly becomes exhausted
when deallocation occurs across TreeLing. We further analyze
the utilization of TreeLing nodes at runtime with NFL. Uti-
lization is computed as the ratio of practically-used nodes over
available nodes among all allocated TreeLings. Figure 17b
reports the utilization ratio and the total number of untracked
TreeLing nodes in the NFL. It is observed that only a small
number of nodes (17-52) are untracked, which is negligible
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Fig. 19: Additional memory accesses due to IvLeague opera-
tions (normalized to baseline scheme).
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Fig. 20: Sensitivity analysis (normalized to IvLeague-Basic
with 64MB TreeLing and 256KB metadata cache).

with respect to the overall number of TreeLing nodes actively
mapped (a total of 22¢ available TreeLing nodes). Overall, we
observe that with NFL, IvLeague can achieve near-optimal tree
node utilization (> 99.99%) while maintaining low leaf node
mapping overhead.

NFLB Hit Rate. The on-chip NFLB is accessed when there
are page allocations and deallocations. Upon NFLB miss, the
in-memory NFL is loaded (e.g., identifying free leaf nodes),
which introduces additional metadata accesses overhead. As
such, NFLB hit rate can have non-trivial impact on system
performance. Figure 18 illustrates the NFLB hit rate for all
workloads. Specifically, for Small and Medium workloads, the
NFLB exhibits extremely high hit rates, with the average range
between 91% and 96.5%. Furthermore, there is certain drop
in the hit rate for the Large workloads due to a substantially
higher activity of page deallocations originating from more
diverse memory ranges. However, the NFLB still maintains a
high hit rate of at least 86.9% across all IvLeague schemes.
Additional Memory Accesses with IvLeague. The introduc-
tion of NFL, integration of LMM in the page table, and ex-
pansion of TreeLing could incur additional memory accesses.
We further perform studies to investigate the memory access
overhead with the IvLeague mechanisms. Figure 19 presents
the total memory accesses in IvLeague for the workloads
normalized to Baseline. Specifically, we observe additional
14%-25% and 0%-15% memory accesses across all work-
loads for IvLeague-Basic and IvLeague-Invert over Baseline.
Differently, IvLeague-Pro demonstrates a reduction of 3% to
9% total memory accesses. This improvement mainly stems
from the reduced number of integrity tree node traversal from
memory, particularly for high-frequency accessed pages.

B. Sensitivity Analysis of IvLeague’s Configurations

We perform several sensitivity studies for IvLeague config-
urations as follows:
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Performance Impact on Sizes of TreeLing and Metadata
Cache. First, we evaluate the performance impact of TreeLing
when varying its size from 8, 64 to 512MB, corresponding
to three, four and five levels inside TreeLings. Meanwhile,
these configurations lead to locking of the top 5, 4 and 3
IV tree levels on-chip, respectively. Note that while keeping
more levels on-chip enhances for top level nodes, this limits
the usable cache space for intra-TreeLing node blocks, leading
to potentially higher cache thrashing. As we observe from
Figure 20a, the 64MB TreeLing has the highest performance
across all configurations (up to 12% and 3% higher perfor-
mance compared to 8 and 512MB TreeLing configurations
respectively). While the performance gain from 8 to 64MB
configuration is due to less cache thrashing, the performance
degradation from 64 to 512MB configuration is primarily
because of a higher amount of integrity tree cache misses
in 512MB for tree nodes which are locked in cache in the
64MB configuration. This result shows the 64MB TreeLing
configuration offers the best balance between levels inside
TreeLing and on-chip locked blocks. We further explore the
impact of different IV metadata cache sizes (from 64KB to
IMB) in IvLeague, normalized to the IvLeague-Basic with a
256KB cache. Figure 20b demonstrates average IPC (gmean)
across all workloads for various IV metadata cache sizes
between 64KB and IMB. We observe that while in general
larger cache shows higher system performance, the additional
performance gains the IvLeague schemes are diminishing
beyond the size of 256KB among all workloads.

TreeLing Size vs Number of TreeLings. We additionally
perform empirical analysis on number of TreeLings required
for different TreeLing sizes to sustain domains with different
memory distributions (i.e., skewness). We define the skewness
factor (S)as S = %, where M, 4, is the memory footprint
for the domain with the largest memory usage, and M;otq;
denotes the total memory footprint among all domains. A
higher value of S (i.e., closer to 1) represents a higher variance
in memory footprint across domains. Figure 21 highlights the
trend of minimum number of TreeLings required to support

ve., 200
“e(cg) 250 0 *
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(b) IvLeague scheme

Fig. 22: Comparison of different number of domain support
without requiring memory swapping. From top to bottom:
Yo M; = (20%, 40%, 60%, 80%).

different skewness and different TreeLing size (for two system
memory configurations: 8GB and 32GB). One clear trend
we observe for both is the number of required TreeLings
significantly reduces as the TreeLing size increases (up to a
certain TreeLing size). This is because larger TreeLing can
cover a larger memory area, requiring a smaller number of
TreeLings. However, beyond a specific TreeLing size, the
number of required TreeLing observes minimal change (i.e.,
beyond 64MB TreeLing across both memory configurations).
This is because a certain number of TreeLing is required to
provide isolation across the supported number of domains,
regardless of the coverage area of individual TreeLing. We
observe this trend for all configured skewness and system
memory configurations. Overall, this result highlights that
64MB TreeLing provides a good balance between the required
number of TreeLings and the length of individual TreeLing.

C. Scalability Analysis of IvLeague

One of the key advantages of IvLeague is that it can support
a dynamic range of IV domains with varying runtime memory
footprints. In contrast, static partitioning schemes (e.g., [31])
can only support up to a fixed amount of memory per domain,
which depends on the total number of partitions in the system.

To compare IvLeague’s support for domains with highly
dynamic range of memory requirements, we analytically
model partition management and memory allocation in static
partitioning. For a fixed number of partitions P and memory
occupied by each domain M, the success/failure of static par-
titioning is defined as whether the domains can be scheduled
without requiring memory swapping (i.e., when Vi, M; < S,
where S is the size of a partition). We empirically calculate
the success rate for a specific configuration by: i) generating
random memory footprint per domain such that Y " | M, =
Fixed Percentage of T (T is the total system memory);
ii) for each generated memory usages among domains, check
if the condition Vi, M; < S is satisfied. If the condition is
met, this case is successful. We perform similar TreeLing
exhaustion analysis on IvLeague. The scalability experiment
is done by configuring multiple different levels of system
memory utilization (20% to 80%). For each level, we vary



Component Storage Area
NFL Logic and Buffer 528-byte | 0.0071mm?
LMM Cache 204KB 0.33mm?
Hotpage Predictor (IvLeague-Pro) | 848-byte 0.018mm?

TABLE III: On-chip hardware cost for IvLeague components.

the number of active domains from 8 to 128, and the total
system memory between 8 to 256GB. Figure 22 shows the
success rates of running these configurations (with a fixed
4096 TreeLings). We observe that static partitioning only has
a high success rate when system memory utilization is low
(i.e., <20%). Its success rate falls significantly with higher
memory utilization (i.e., >40%), and with larger number of
runtime domains (i.e., >32). In contrast, IvLeague consistently
maintains a success rate of > 98% across all configurations.

D. Hardware Overhead Analysis

IvLeague requires on-chip hardware support and off-chip
storage for the proposed mechanisms. Table III provides
an overview of the main hardware overheads (storage and
area) based on the default setup (Section I1X). We evaluate
the area overheads using CACTI [96] with 45nm process
node. Specifically, IvLeague utilizes a 204KB on-chip LMM
cache. For each core, IvLeague maintains a 128-byte NFL
on-chip buffer and a 4-bit NFL head register in the memory
controller. In addition, IvLeague-Pro integrates a 128-entry
hotpage predictor (848 bytes of on-chip storage) per-core. The
overall on-chip area overhead is 0.3551mm? for the evaluated
configuration, which is negligible with respect to the typical
chip area of modern processors [97]. Moreover, our IvLeague
implementation does not require additional on-chip storage for
metadata isolation. Instead, a portion of the IV metadata cache
(32 KB out of 256 KB) is reserved to lock the TreeLing roots.
In terms of off-chip storage, each TreeLing node requires 64
bits of NFL metadata (i.e., 56-bit tag and 8-bit availability bit
vector), leading to a total of 16MB of system memory storage
for all TreeLings (0.05%). Additionally, due to the integration
of LMM, each page table entry (PL1) is additionally associated
with 64-bit leaf ID. Finally, the globally-formed integrity
tree from TreeLings is one-level taller than the static tree in
Baseline, resulting in use of additional 0.7% usage of system
memory for IV metadata (0.89% in Baseline).

XI. RELATED WORKS

As TEE designs mature and are increasingly adopted in
real-world applications, the focus on preventing side channel
vulnerabilities in TEE architectures has gained significant
attention. Consequently, TEE-centric defenses are necessary
to mitigate side channel leakage in these scenarios. Unlike
protection mechanisms in classical side channels that can
rely on support from system software, leakage prevention
mechanisms in TEE environments have to address the po-
tential threats from privileged attacks that possess powerful
system-level control (e.g., instruction stepping and replay [3],
[79]). Therefore, hardware-based side channel protections are
necessary against TEE-enabled attacks. Prior works( [18],

[21], [31])) propose to mitigate side channels in TEEs by
partitioning or isolating shared microarchitectural components
for enclaves. For instance, MI6 [18] provisions major shared
hardware components (e.g., caches and on-chip networks) for
enclaves to defeat cross-core contention-based attacks, and
performs cache flushing upon context switches to disrupt
same-core leakage [18]). Cachelets [21] enables dynamic on-
demand allocation of fine-grained cache regions to enclaves
through set and way-based cache partitioning. Bespoke [19]
leverages set-wise cache partitioning through a flexible cache
set indexing mechanism, isolating cache accesses from specific
domains into dedicated sets. Additionally, recent secure cache
designs [35], [36], [63], [89] employ cache access randomiza-
tion (e.g., address to set mapping) to thwart conflict-based
attacks on caches with various security guarantees. These
techniques effectively protect against contention-based infor-
mation leakage on shared hardware and can be integrated with
IvLeague for holistic leakage protection in secure processors.

Alongside efforts in microarchitecture security, ongoing re-
search aims to enhance the performance of secure architecture
designs. Despite the commercial adoption of secure processor
architectures (TEE), their performance overhead compared to
non-TEE execution remains substantial. Recent architecture-
level optimizations for secure architectures include innovations
such as using variable-arity integrity trees (e.g., VAULT [65])
to minimize metadata maintenance overhead. Synergy [66] re-
purposes the ECC chip for MAC storage, eliminating memory
traffic overhead for MAC accesses. Morphable counter [73]
employs a compact counter structure with overflow preven-
tion to reduce page re-encryptions. Each of these techniques
targets different components of secure architectures. IvLeague
operates independently of these optimizations and has the
potential to integrate them, further enhancing performance
without compromising security guarantees.

XII. CONCLUSION

Secure processors utilize tree-based integrity verification to
protect off-chip data. However, this integrity tree is a global
structure shared across the security domain. This can introduce
severe side channel leakage through shared integrity tree
metadata. In this work, we present IvLeague, an architecture
framework technique that provides cross-domain isolation of
integrity tree. IvLeague breaks the integrity tree into many
small isolated TreeLings, which are allocated to domains to
provide isolation. We further propose two optimizations: i)
IvLeague-Invert, which reduces the integrity verification path
by utilizing intermediate tree nodes as leafs; and ii) IvLeague-
Pro, which tracks and places hotpages closer to root. Overall,
IvLeague scheme offers upto 19% speedup over insecure
baseline, while providing proper side channel protection for
shared integrity tree metadata.
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