
MetaLeak: Uncovering Side Channels in Secure Processor
Architectures Exploiting Metadata

Md Hafizul Islam Chowdhuryy, Hao Zheng and Fan Yao
Department of ECE, University of Central Florida

hafizul.islam@ucf.edu, hao.zheng@ucf.edu, fan.yao@ucf.edu

Abstract—Microarchitectural side channels raise severe se-
curity concerns. Recent studies indicate that microarchitecture
security should be examined holistically (rather than separately)
in systems. Although the effects of performance optimizations on
side channels are widely studied, the impacts of integrating secu-
rity mechanisms intended for other threats on microarchitecture
security are not well explored.

In this paper, we perform the first side channel exploration
in secure processor architectures that offer data confidentiality
and integrity protection through hardware. We investigate mi-
croarchitecture security in the design space of secure processors
and identify unique properties in the underlying metadata man-
agement schemes, which can be leveraged for new information
leakage attacks. We present MetaLeak, an end-to-end side
channel attack framework that exploits timing variations due
to metadata maintenance to exfiltrate program secrets in secure
processors. Particularly, we present two variants of the attack:
MetaLeak-T that exploits the sharing of integrity tree metadata,
and MetaLeak-C that manipulates counter metadata states. Our
evaluation first shows highly accurate covert communication
using the security metadata that can operate across cores
and sockets without explicit data sharing. We further perform
extensive side channel case studies on state-of-the-art secure
architecture designs as well as the SGX processors. Our results
show that MetaLeak can successfully exfiltrate program secrets
(up to 97% accuracy) from image-processing application and
cryptographic software running in enclave. Our study indicates
that the fundamental metadata mechanism is the root cause
of the leakage, which necessitates the use of leakage-taming
techniques in future secure processors. This work highlights the
need to synergistically understand microarchitecture security, as
new security mechanisms are integrated.

Index Terms—Microarchitecture security, Side channel, Secure
architectures, Trusted execution environment, Metadata

I. INTRODUCTION

Information leakage through microarchitectural attacks has
raised critical security concerns in modern and emerging com-
puting systems [1], [2], [3], [4], [5], [6], [7], [8]. These attacks
can exfiltrate secretive data by modulating microarchitectural
states (e.g., cache occupancy) during a victim program’s
execution. While a plethora of prior works have studied side
channel vulnerabilities in existing processor components in-
dividually, recent advances have shown that microarchitecture
security cannot be considered as a standalone problem [9],
[10]. As the community increasingly advocates for secure-
by-design architectures and proposes deploying more security
countermeasures from different aspects into hardware, it is crit-
ical to understand the composability of security. Specifically,

how does the introduction of certain security mechanism for
one threat reshape the hardware attack surface of another?

Alongside the efforts to enhance microarchitecture secu-
rity, trusted computing has rapidly gained attention in re-
cent years due to the growing concerns of trust in remote
computing platforms (e.g., cloud computing). Under such a
threat model, adversaries can launch privileged software or
physical attacks to compromise program data either in transit
or at rest [11], [12], [13]. State-of-the-art trusted computing
mechanisms employ secure processor architectures [12], [13],
[14], [15], [16], [17] that take the CPU as the root of trust
(e.g., trusted execution environment or TEE) and provide
robust data protection through hardware. Best practices of
secure processors perform encryption and integrity verification
with the help of processor-maintained security metadata [12].
Variants of such approaches are adopted in commercialized
solutions (e.g., Intel SGX [11]), where off-chip data security is
safeguarded inside an enclave. Although there have been many
studies on microarchitectural attacks and secure processor
architectures alone, the security impact of supporting secure
architectures on microarchitectural information leakage has
not been well understood. Note that while prior works have
investigated SGX side channels [18], [19], [20], [21], [22],
[23], they primarily focus on exploring elevated side channels
due to attackers’ capability of privileged access, rather than
identifying new leakage vulnerabilities within the underly-
ing architectural mechanisms in secure processors. With the
increasing demand for both on-chip and off-chip security,
understanding the interplay between microarchitecture security
and secure processor designs becomes imperative.

This paper explores microarchitecture security vulnerabil-
ities in secure architectures. We systematically examine the
design space of secure architectures in both state-of-the-
art academic proposals [12], [14], [15], [16], [24] and the
commercial-off-the-shelf SGX hardware [11], [25]. Our inves-
tigation reveals the key finding that the fundamental metadata
management mechanism introduces new on-chip information
leakage threats. Firstly, unlike in conventional architectures,
memory accesses in secure processors exhibit abundant and
highly distinguishable slow/fast paths due to the complicated
interactions with metadata. Secondly, certain types of metadata
(i.e., integrity tree counters) are incremented along with data
block writes, which would introduce tremendous variations in
memory accesses upon overflow. Finally, the use of metadata
by design enables implicit sharing of memory (i.e., integrity

1

tree blocks) across domains, leading to side channels through
metadata even when regular data sharing among untrusted do-
mains is prohibited (e.g., to defeat shared memory attacks [3]).

Based on the above observations, we present MetaLeak,
a novel side channel framework in secure processors that
exploits the secret-dependent metadata access, in contrast
to data access primarily targeted in prior microarchitectural
attacks [2], [3], [26], [27]. We design two variants of this
attack, namely MetaLeak-T and MetaLeak-C. MetaLeak-T
infers program secrets (e.g., in enclave) by monitoring vic-
tim’s accesses to the shared integrity tree nodes using a
new exploitation technique–mEvict+mReload. Since se-
curity metadata cannot be directly accessed from software,
mEvict+mReload generates carefully curated data accesses
to exercise the desired integrity verification path indirectly.
Differently, MetaLeak-C manifests as a write-observing leak-
age channel that identifies the timing differences in counter
metadata maintenance through counter preset and overflow
(i.e., mPreset+mOverflow). We first demonstrate covert
channels capable of communicating across cores and sockets
using both attack variants, which achieve above 99.3% bit
accuracy. We then conduct side channel case studies in both
academic designs [12], [14] and the commercially-available
SGX processors, targeting real-world applications. Notably,
under the state-of-the-art secure processor design [12], [14],
MetaLeak manages to recover input images from a libjpeg-
based image-processing program with high fidelity (up to 97%
stealing accuracy). We further launch MetaLeak attacks against
libgcrypt and mbedTLS based cryptographic software
running in SGX enclaves. Our results show that MetaLeak can
successfully exfiltrate cryptographic secrets with up to 91%
accuracy. Finally, our investigation reveals that the identified
vulnerabilities are uniquely tied to the underlying compo-
nents in secure processors, which can render mainstream side
channel mitigation ineffective (e.g., hardware obfuscation and
partitioning [28], [29], [30], [31], [32], [33], [34]). Our work
highlights the need to rethink secure architecture designs for
microarchitecture security. In summary, the main contributions
of this work are:

• We highlight the importance of understanding microar-
chitecture security as systems are integrated with trusted
computing mechanisms for data confidentiality and in-
tegrity protection.

• We investigate and characterize the secure processor
architecture design space, alongside on-chip side chan-
nel exploitation in state-of-the-art designs. We identify
unique properties that expose new attack surfaces for
information leakage in secure processors.

• We present MetaLeak, the first side channel attack
framework that exfiltrates secrets by exploiting security
metadata. We build two variants of attacks: MetaLeak-
T that can manifest cross-core and cross-socket without
the need for explicit data sharing; and MetaLeak-C, the
fine-grained write-based channel through counter states.
We implement two covert channels attacks, demonstrating

high bit rate (MetaLeak-T) and accuracy (MetaLeak-C).
• We perform three case studies of MetaLeak side channels

that can accurately infer secrets from real-world appli-
cations including image processing and cryptographic
software. We demonstrate successful exploitation in both
academic designs and real systems with Intel SGX.

• We discuss the unique challenges in architectural design
that must be addressed to defend against MetaLeak. Our
work highlights the need to rethink secure processor
designs to sustain microarchitecture security.

II. BACKGROUND AND RELATED WORKS

A. Microarchitectural Attacks and Defenses

Microarchitectural side channel attacks are a form of in-
formation leakage attack where an adversary establishes il-
licit communication through modulating microarchitectural
states that influence the timings of instruction executions
(e.g., latency). These attacks typically consist of manipulating
microarchitectural state changes dependent on secretive data,
and inferring the secrets based on microarchitectural state
observations. With extensive studies of microarchitectural side
channels over the past decade, it is evident that hardware
performance optimization techniques are one of the underlying
causes of these vulnerabilities. Examples of such exploited
performance-enhancing techniques include caching [2], [3],
[27], [35], branch prediction [6], [7], [36], memory optimiza-
tions [37], [38], [39], [40], [41], and speculative execution [5],
[36], [42]. These attacks significantly compromise on-chip
data security. To mitigate microarchitectural timing channels,
many defensive mechanisms have been proposed [43], [44],
[45], [46], [47], [48], [49]. These works generally fall into
the following categories: i) obfuscation-based approaches [28],
[43], [46], which randomize the accesses to certain microar-
chitectural components (e.g., address-to-cache set mapping)
to disrupt timing observations, and ii) isolation-based ap-
proaches [30], [31], [32], [33], [34], which employ spatial
or temporal partitioning of shared hardware resources. In
addition, timing channel detection mechanisms audit shared
hardware resource usage for potentially malicious access pat-
terns (e.g., periodic contention) [35], [44], [50], [51], [52].
Nonetheless, new attack variants are regularly published that
can bypass current defenses [4], [46], [53], [54]. To ensure the
security of future systems, it becomes crucial to understand
microarchitectural security in a holistic manner by meticu-
lously exploring the interplay among different microarchitec-
tural mechanisms.

B. Secure Processor Architectures

Hardware-based threats on off-chip data span two categories
that can severely compromise security: i) data stealing (e.g.,
bus snooping [55] and cold boot attacks [56]), and ii) data tam-
pering (e.g., transient faults [57], [58] and physical memory
manipulation [59]). These attacks motivate the hardware and
architecture community to design secure processor architec-
tures. In this pursuit, treating the processor as the root of trust
has gained significant attention. Typically, secure processors

Processor Chip

…

Last Level Cache

Memory Controller

Crypto
Engine

Main Memory

Data

Metadata

Read Queue

Write Queue

Security Metadata
Cache

Encryption
Metadata

Integrity Verification
Metadata

Fig. 1: Overview of secure processor architecture.

protect data confidentiality and integrity by incorporating a
security engine on-chip [12], [13], [15], [60]. The processor
encrypts plaintext data blocks and stores them in memory as
ciphertext, together with encryption and integrity verification
metadata. When data is read from memory, the ciphertext
blocks are decrypted and checked for potential tampering.
These hardware security primitives in secure architectures
serve as the foundation for commercial processors featuring
TEE, such as Intel SGX and AMD SEV [11], [61], [62].
Figure 1 shows an overview of state-of-the-art secure processor
design. The key components are:

Data Confidentiality Protection. Data encryption is typ-
ically performed using state-of-the-art block ciphers such
as AES [63]. To offer a strong confidentiality guarantee,
hardware-based encryption mechanisms must ensure that the
same data content written to the memory maps to different
ciphertexts (e.g., to mitigate known-ciphertext attacks [64]).
While there exist various encryption modes (e.g., AES elec-
tronic codebook [65]), counter-mode encryption is particularly
appealing in secure processors. With such techniques, a seed
is applied in the block cipher to generate a unique one-time
pad (OTP). Data in a block is then XORed with the OTP for
encryption and decryption. To ensure the temporal uniqueness
of the OTP (i.e., for writes to a block over time), a counter
(e.g., for each block) is used as part of the seed, which is incre-
mented each time for a new encryption. Meanwhile, to ensure
OTPs are unique among different blocks, the block address is
further added as a seed component. Counter-mode encryption
improves security and offers high performance by effectively
hiding the cryptographic operation (OTP generation) from the
critical path of memory reads. Figure 2 illustrates the counter-
mode encryption in secure architectures where encryption
counters are maintained in memory [12], [14], [66], [67].

Data Integrity Verification. Memory data is vulnerable to
various forms of tampering, including: i) data spoofing that
directly alters data, ii) data splicing where values from two
memory locations are swapped, and iii) data replay in which
older data of a block is used to replace its current value.
Conventionally, data integrity is protected through an authenti-
cation mechanism using message authentication codes (MAC)
based on keyed hash [68]. The MAC is loaded along with its
data block from memory and checked with the re-computed
MAC from the loaded block. A detected mismatch indicates

root

DataMAC Integrity TreeCounter

Encryption Key
(On-Chip)

Crypto
Engine

One-Time Pad

Plaintext Data

Ctr.
Processor

Memory
Ciphertext Data

MAC(Data+Ctr.)

Fig. 2: Metadata structure in representative secure processors.

the presence of data spoofing. This can be further augmented
by adding the block address into the MAC generation to detect
data splicing attacks [66]. However, MAC-based authentica-
tion cannot defend against data replay attacks that replace
paired data and MAC captured at a previous time. To further
detect data replay, the processor essentially has to keep track
of an untampered digest of the whole memory. This is achieved
by additionally maintaining an integrity tree (e.g., tree of
hashes) constructed over memory data, with the root of the tree
always kept on-chip [69], [70]. Using the integrity tree, any
off-chip data manipulation (including data replay) will result
in a mismatch eventually with the tree root. Note that secure
processors can also integrate ECC [15] in memory, which
specializes in error correction rather than tamper detection.
Recent works show the possibility of deriving version counters
on-chip and eliminating the need for tree-based metadata in
domain-specific accelerators [24], [71], [72], [73]. However,
these techniques are mainly designed to protect workloads that
have deterministic and uniform memory access patterns (e.g.,
machine learning). The integrity tree is still the most effective
way to ensure data freshness in general-purpose computing.

While secure processors provide off-chip data security, their
designs have not considered on-chip security, particularly with
respect to microarchitecture security. To holistically under-
stand the overall security landscape of modern processors, it
is critical to explore how secure processor architecture designs
impact microarchitectural information leakage.

III. THREAT MODEL

We assume that an adversary attempts to exfiltrate sensi-
tive information from a victim process via microarchitectural
attacks. To protect against adversaries with the capability of
accessing/probing machines physically (e.g., bus snooping and
cold boot attacks [55], [56]), state-of-the-art secure processors
are deployed in the systems [12], [14]. We use a general threat
model considering various use cases of secure processors.
Specifically, conventional secure architectures assume that
the operating system (OS) is trusted and the attacker only
manifests as unprivileged userspace processes. Under a trusted
execution environment (e.g., SGX), the OS can be maliciously
controlled. In such a scenario, the attacker may have privileged
control of victim’s process such as fine-grained stepping [25]
and execution replay [22]. We further assume read-only data
sharing between the attacker and victim processes (e.g., shared

M

D D D D …
Memory

GC

D …
Memory

MoC …

D D D D …
Memory

m m M m m

(a) Global Counter (b) Monolithic Counter (c) Split Counter

MoC

D D D

Fig. 3: Counter-sharing groups during encryption in different
counter schemes. GC = Global counter, MoC = Monolithic
counter, M = Major counter and m = Minor counter.

libraries) is either disabled [30], [31] or audited [52], which
can thwart previous side channels exploiting shared memory
(e.g., Flush+Reload [3]). Furthermore, similar to prior side
channel attacks leveraging uncore hardware resources [74],
[75], we assume that the victim’s memory accesses of interest
reach LLC/memory controller due to either system security
policies (e.g., cache cleansing [6], [74], [75]) or programming
models (e.g., persistent applications [76]). The adversary aims
to launch the attacks cross-core or cross-socket, which is
plausible as metadata are shared across all cores in the system.
Finally, we exclude attacks that harness physical properties
of the machines as sources of side channels, such as power
consumption and electromagnetic emanations [77], [78], [79].

IV. MICROARCHITECTURE (IN)SECURITY IN SECURE
PROCESSOR DESIGN SPACE

In this section, we perform a systematic investigation of
the architectural design and optimization in secure processors.
The key objective is to examine the fundamental design com-
ponents of secure architectures and understand the potential
vulnerabilities that could lead to timing-based leakage.

Definition of Core Elements. Secure processor architecture
is built on three cryptographic primitives:

• Counter-mode encryption: c = p⊕Enck(s), where p is a
plaintext data chunk within a memory block (P), c is the
encrypted chunk and s is the seed. The encrypted chunks
(c) in a block forms an encrypted block C.

• Data authentication: M = MACk(C, addrb), where
MAC is typically a keyed hash operation (e.g.,
GHASH [68]) performed over the ciphertext memory
block C, and its block address addrb.

• Integrity tree: hl
i = Hash(hl−1

i1
∥ hl−1

i2
∥ ... ∥ hl−1

ik
) for

hash-based integrity tree or ctrli =
∑k

j=1 ctr
l−1
ij

for tree
of counters. l is the level of a tree node, hl

i (or ctrli)
is the parent hash (or counter) node at the lth level, and
hl−1
i1...k

(or ctrl−1
i1...k

) are the corresponding child hash (or
counter) nodes. ∥ is the concatenation operator. The tree
is constructed recursively where each intermediate node
is a hash (or counter) derived from its child nodes. The
root of the tree (hroot or ctrroot) is stored on-chip.

A. Counter-mode Encryption Design

To maintain data confidentiality, secure processor archi-
tectures predominantly use AES counter-mode encryption or

Algorithm 1: Counter-mode Encryption Mechanism
Input: Pt: current block to encrypted

1 Function Encrypt(Pt):
2 ctrold = ctr
3 Increment (ctr) // Increment the counter
4 if ctrold = ctrMax then

// Overflow detected. Change
encryption key (GC/MoC) or
increment major counter (SC)

// Re-encrypt memory blocks in G
5 Decrypt(Pi) with old counters, Encrypt(Pi) with

new counters for Pi in {G−Pt}
6 Encrypt(Pt) using ctr

7 else
8 Encrypt(Pt) using ctr // Only encrypt Pt

its variants. Figure 3 illustrates the main design for encryp-
tion counters. The key differences among these schemes are
the group of memory blocks (G) sharing the same counter.
Specifically, Global Counter (GC) scheme uses one counter
shared among all memory blocks for encryption [80], [81].
The snapshot value of the counter encrypting each block is
stored as metadata for subsequent decryption. When the global
counter overflows, the encryption key must be changed and
whole-memory re-encryption is performed with the new key
(i.e., GGC = all blocks in memory). Monolithic Counter (MoC)
maintains one counter per memory block for both encryption
and decryption, which considerably reduces frequency of
overflow [82]. Note that overflow of one counter still needs re-
encryption of the entire memory (i.e., GMoC = all blocks in
memory). Finally, the Split Counter (SC) scheme organizes
memory blocks into groups (typically covering a physical
page each [13]), each group is assigned a large counter (i.e.,
major counter) and a set of small-size per-block counters (i.e.,
minor counter). To encrypt/decrypt each block, a fused counter
is formed by combining the shared major counter and its
own minor counter. Writes to a data block increase its minor
counter first. When a minor counter overflows, the shared
major counter is incremented and only the blocks sharing the
major counter are re-encrypted (i.e., GSC = blocks in a major
counter-sharing group). Typical SC schemes keep a 64-bit
major counter and a group of 64 7-bit minor counters, forming
exactly one counter block corresponding to one data page [12],
[14], [15], [83], [84]. Such design keeps counter storage
small and meanwhile reduces overhead of counter overflow
compared to the MoC scheme. Note that encryption is done
chunk by chunk (e.g., 16B for AES-128). Consequently, seed
uniqueness needs to be maintained at chunk level. To achieve
this, the seed is typically generated by combining the chunk
address (i.e., addrb and chunk offset) with the block’s counter:
addrck ∥ ctr (e.g., fused counter in SC schemes).

Maintaining encryption counters can bring non-trivial per-
formance overhead. Accordingly, several architectural opti-
mizations explore more compact and efficient counter de-
signs [14], [85], [86]. Note that in all encryption counter

designs, counters must be updated following every write to
ensure seed uniqueness. Since the counter size is finite, these
counters will eventually overflow. As they are shared across
multiple data blocks/pages, overflow in these requires re-
encryption of the entire counter-sharing group along with the
target block write. As highlighted in Algorithm 1, this creates a
metadata state dependent execution paths: 1) the longer path in
case of overflow, a set of data blocks (together with counters)
are read, re-encrypted, and written back; or 2) the shorter path,
only one data block is encrypted and written back (VUL-1).

B. Data Authentication

MAC is typically computed over ciphertext data and stored
along with it for authentication. For secure processors which
also keep encryption counters in memory, MAC could be
additionally extended to counter blocks [81]. Alternatively,
MAC can be maintained over each data block and counters
by pairing the data block and its corresponding counters (i.e.,
MACk(C, ctr, addrb) [12]). Such scheme allows integrity
verification with tree over encryption counters only. Classical
designs typically do not cache MAC [13]. Instead MAC is read
from memory for every data read and write. Alternatively, in-
memory ECC bits can be repurposed to store the MAC [15],
which allows fetching both data and MAC in a single memory
read. During write, MAC is recalculated and stored in memory.
Memory authentication using MAC does not result in variable
execution latency differences (i.e., always requires fixed MAC
calculation latency and one MAC read latency in classical
design), hence it is agnostic of program or secure memory
metadata access patterns.

C. Integrity Verification Tree Design

To detect data replay attacks, a hierarchical tree structure
(i.e., integrity tree) has to be used in secure processors
(See Section II-B). State-of-the-art secure processors typically
adopt one of the two integrity tree designs (shown in Figure 4):
i) counter tree (CT) where the tree is built primarily with a
combination of counters [14], [15], [16]; ii) hash tree (HT)
where tree node contains hash values [12], [13]. Multiple
logical tree nodes form a tree node block. Each tree leaf node
has a memory block attached to it (i.e., covered by the tree). A
standard integrity tree has the leaf nodes cover all non-integrity
tree data [13], [81]. However, when the MAC is computed
over coupled data and encryption counters (Section IV-B),
the tree can be built to cover encryption counter blocks
only, resulting in a shorter and more efficient Bonsai Merkle
Tree [12]. Reads of one tree-attached block from the main
memory trigger integrity verification through a tree traversal.
This involves loading the node blocks from the leaf to the
root node (i.e., bottom-up), and checking the tree nodes along
the path for tamper detection. Writes to a covered memory
block first activate the same verification process as in read,
followed by an update to the tree nodes along the path. Since
a complete leaf to root traversal introduces considerable meta-
data accesses, secure processors typically cache tree nodes
in the on-chip metadata cache. As the processor defines the

(Stored in Memory)

Memory Block

H H H…

…

H H H……

H H H… H H H……

…

H H H…

Leaf
nodes

Intermediate
nodes

root (On-Chip)

Memory Block

(a) Classical hash tree (HT)

Encryption
CountermM m… H mM m … H …

mM m… H
#

mM m… H

(Stored in Memory)

Intermediate
Counters

root (On-Chip)

…

mM m… H mM m… H …

m m…

…

Leaf nodes

M

(b) Counter-based integrity tree (SCT)

Fig. 4: Different integrity tree schemes (H = Hash, # =
Hash operation). Multiple logical tree nodes form a metadata
memory block (i.e., node block).

Algorithm 2: Data Integrity Verification
Input: B // Memory block to verify

1 Leaf node: N i
A // The ith-level ancestor tree

node for an attached memory block B
2 Function Verify(B):

// Assume Block(NL
A) is cached

3 for i from 1 to L do
4 Load Block(N i

A)
5 Verify (Block(N i−1

A)) with N i
A

6 Verify(B) with N0
A

security boundary, cached node blocks are trusted. Thus, the
aforementioned tree traversal path only needs to proceed to
the first node block cached on-chip (essentially serving as a
temporary root) without compromising security [81].

For HT, each node is a hash of its child nodes grouped
as one node block (Figure 4a). The number of hashes in a
node block defines the tree arity. Verification of one attached
memory block involves matching its hash with its leaf node
hash (e.g., h0

i), and further verifying this tree node using the
hash in its parent node (i.e., hl

i
?
= Hash(hl−1

i1
∥hl−1

i2
∥...∥hl−1

ik
)).

For CT designs, a node block contains a combination of
counters and an embedded per-block hash. State-of-the-art
academic designs [14], [15], [16] use the split-counter tree
(SCT), where one node block maintains a tree major counter
(ctr) and a set of tree minor counters (ctr), similar to the en-
cryption counter design in SC mode (Section IV-A). Figure 4b
shows the split-counter tree over encryption counters. Each
tree minor counter essentially serves as the parent node for its
child nodes. The tree is constructed such that the value of a
parent minor counter is the sum of all its child minor counters
(i.e., ctrli ←

∑k
j=1 ctr

l−1
ij

). Additionally, the embedded per-
block hash is computed over its own major/minor counters
and its parent minor counter as illustrated in Figure 3, defined
as hl

i ← Hash(ctrl+1
i ∥ ctrl ∥ ctrli1 ∥ ctr

l
i2
∥ ... ∥ ctrlik). In

SCT, a memory block verification (e.g., encryption counter
block) involves comparing the parent minor counter with the
sum of the current node block’s minor counters (together with
verifying the embedded hash if necessary) all the way to
a cached node. Note that SCT counters are also subject to
overflow. When a tree minor counter overflows, the current

Data
cache

Main
Memory

①

Memory Controller

R/W Queue

TreeCounter
Metadata Caches

Crypto
Engine R

W

(a) Data cache hit

Data
cache

Main
Memory

①

Memory Controller

R/W Queue

TreeCounter
Metadata Caches

R
W

②

(b) Counter cache hit

Data
cache

Main
Memory

①

Memory Controller

R/W Queue

TreeCounter
Metadata Caches

R
W
②

③

④

(c) Counter cache miss

Data
cache

Main
Memory

①

Memory Controller

R/W Queue

TreeCounter
Metadata Caches

R
W
② ③

④

➄

(d) Integrity tree cache miss

Fig. 5: Data access paths of memory reads associated with metadata accesses: a) data cache hit; b) data cache miss and counter
cache hit; c) data/counter cache misses and integrity tree cache hit; and d) data/counter/integrity tree cache misses.

node and all its descendant node blocks’ minor counters
and major counters are reset and incremented, respectively.
Accordingly, a re-hashing operation is performed to update
the embedded hash in all the node blocks of this subtree. Intel
SGX uses a variant of CT design, referred to as the SGX
Integrity Tree (SIT) [11], [67], [87]. Different from SCT, SIT
leverages only monolithic counters in tree node blocks [67].

Algorithm 2 illustrates the abstracted mechanism for the
tree-based verification in secure processors. To verify the in-
tegrity of an attached block, all schemes require the procedure
of loading node blocks to the metadata cache bottom up, which
concludes at the first ancestor node on-chip. This exposes
a new timing leakage scenario: the latency of the integrity
verification path varies according to tree node caching state.
More importantly, as the integrity tree is maintained globally,
each tree node is shared across a group of attached blocks.
For instance, in an 8-ary tree, a node block in the first and
second levels is shared by 8 and 64 attached memory blocks,
respectively. Ultimately, an arbitrary memory block B shares at
least one node with other attached blocks in secure memory. In
other words, tree node sharing is universal in secure processors
and is independent of regular data sharing, which the TEE
runtime could regulate. The sharing nature of the tree node,
combined with its caching-dependent verification, creates a
new side channel attack surface. Essentially, an adversary
can exploit the timing of secret-dependent integrity metadata
access (VUL-2), in contrast to the widely-understood secret-
dependent data access that enables numerous microarchitec-
tural attacks [2], [3], [4], [36]. Moreover, as discussed above,
node updates in counter trees (e.g., SCT) can induce the
handling of overflow, which introduces much higher latency.
Hence, the non-constant write timing (as in encryption coun-
ters VUL-1) also exists for tree counters, which can vary at an
even greater scale with the potentially larger block coverage.

V. TIMING CHARACTERIZATION IN SECURE PROCESSOR
ARCHITECTURES

This section investigates latency variations in data read and
write paths due to metadata management in secure proces-
sor designs. We primarily focus on the timing of software-
hardware interactions that exercise the metadata management
mechanism to assess their potential for information leakage.
Figure 5 illustrates various access paths corresponding to
the processor data read operation under different metadata

0 100 200 300 400 500
Latency (Cycles)

0
25
50
75

100

Fr
eq

ue
nc

y
(%

) Cache Hit
Tree L1 Miss

Counter Hit
Tree L2 Miss

Tree L0 Hit
Tree L3 Miss

Tree L0 Miss
Tree L4 Miss

Fig. 6: Latency distribution across access paths (Simulation).

caching states. Path-1: the data read request results in cache
hits (①), no action is triggered in any security component
(Figure 5a). When a last-level cache miss occurs, the data
block must be loaded from main memory, decrypted, and
integrity verified. Therefore, Path-2 represents the scenario
when the data block’s counter is cached on-chip (Figure 5b).
In this case, the memory controller (MC) services the read
request from its read queue (①) and issues it to main memory.
The returned data block is authenticated using MAC and
decrypted with the counter (②). Path-3: When the counter
misses in the metadata cache, it needs to be read from memory
first (②) and then integrity verified using the integrity tree
(③) before decrypting the data (④). Figure 5d illustrates the
execution path when the tree leaf node is cached on-chip, with
which counter block integrity is verified. Lastly, Path-4 is
similar to Path-3, with the difference that one or multiple nodes
leading to the tree root are not present on-chip (Figure 5d). As
such, the integrity tree nodes themselves need to be read from
memory (③) and verified from bottom up before verifying
the integrity of the counter (④), which eventually leads to
data decryption (⑤). This process introduces multiple memory
accesses and hashing operations, resulting in considerable long
and variant latency for the data accesses.

For data write operations, the counter must be present to
encrypt the outgoing data, resulting in similar behavior as read
operations. In addition to that, data write will also update the
counters, subsequently requiring integrity tree node updates to
keep the metadata up-to-date. Note that encryption counters
are typically updated when data write is serviced by the MC.
Differently, integrity tree nodes are only updated when the
corresponding encryption counters are evicted from the cache.
Typically, a lazy update scheme is employed where only the
immediate tree node (e.g., leaf) is updated upon encryption
counter writeback, and higher-level nodes are updated when

100 200 300 400 500 600 700
Latency (Cycles)

0
25
50
75

100
Fr

eq
ue

nc
y

(%
) Data Cache Hit

Tree L1 Miss
Tree L0 Hit
Tree L2 Miss

Tree L0 Miss

Fig. 7: Latency distributions across access paths (Intel SGX).

dirty child tree nodes are evicted from the metadata cache.
To understand the impact of metadata management on data

access latency, we design a microbenchmark such that the
memory data access path follows one of the paths from
Figure 5. We perform this study in two configurations: i)
simulate academic designs with SCT [67] and HT [12] (SCT
by default), and ii) Intel SGX hardware with the SIT integrity
tree (See Section VII for detailed experimental setup).
Memory Read Latency. Figure 6 shows the latency dis-
tributions corresponding to various access paths with the
simulated academic design. We observe that different paths
exhibit highly distinguishable access latencies (between the
range of 30 to 400 cycles). Additionally, the same access path
(i.e., Figure 5d) can have multiple additional latency levels
depending on which level of the integrity tree is in cache
prior to the data block access. Notably, 450 cycles is needed
in case the integrity verification is missed at all levels of
the tree. Note that we observe similar latency distributions
in a simulated HT-based design. In addition to the simulated
configurations, we also perform latency characterization on
SGX-enabled processors (See Section VIII-B for detailed
method). In particular, we perform latency characterization in
Intel SGX by allocating 80MB EPC data in an enclave and
time the read latency to blocks accessed in a stride pattern.
Figure 7 presents the latency corresponding to data access
paths in SGX. Specifically, we observe access latency varying
between 150 to 700 cycles. In particular, around 250 cycles
is needed for data read from memory when integrity tree leaf
is in cache and about 650 cycles is required when tree node
blocks are missed at all levels.
Memory Write Latency. The completion of data write from
MC in secure processors can exhibit the same set of variations
due to caching status of security metadata. Different from
reads, write operations increment the encryption counters (and
tree counter in CT), which can potentially lead to counter over-
flow. As discussed in Section IV, counter overflow handling is
an expensive operation. To quantify the latency distributions
associated with tree counter overflow, we design a microbench-
mark to measure the latency of a read operation immediately
following overflow. The benchmark performs 2n − 1 writes
updating a tree counter node, where n represents the size of
the tree minor counter. This saturates the counter, ensuring
that any subsequent write updating this will lead to overflow.
Subsequently, we perform either a write updating this counter
(thus triggering overflow) or a write to an entirely different
location (avoiding overflow). Concurrently, in another thread,

0 1000 2000 3000 4000 5000
Latency (Cycles)

0

20

40

60

Fr
eq

ue
nc

y
(%

)

Regular Access
Counter Overflow

Fig. 8: Observable memory latency distributions impacted by
counter overflow (Simulation).

…
…

… … …

…

Attacker CntA

Integrity Tree
…

Main Memory
…

…Victim1 Cnt

Victim2 Cnt ①

②

① ①

② ②

Fig. 9: Implicit sharing of integrity tree metadata.

we execute a timed memory read of a memory block whose
address is in the same memory bank. In SCT, we collect
10,000 read latency samples for each case. As illustrated in
Figure 8, observed memory read latency resides in two distinct
latency bands that differ in 2000 cycles.

In summary, secure processor designs severely exacerbates
latency profiles due to the complex interactions between the
MC and main memory. Such latency differences associated
with metadata maintenance can be exploited to perform
novel information leakage attacks. Note that while the prior
work [88] proposing optimized and compact metadata man-
agement has considered potential covert channels due to the
sharing of metadata cache, our work is the first to explore
microarchitecture security in the design space of secure pro-
cessor architectures with formulation of side channels that can
manifest in real-world applications.

VI. METALEAK - SIDE CHANNELS EXPLOITING
SECURITY METADATA

In this section, we present MetaLeak- a side channel attack
framework that leverages metadata accesses in secure proces-
sors. We design two variants of MetaLeak: a) MetaLeak-T-
which exploits the shared integrity tree to infer victim memory
access patterns; and b) MetaLeak-C- which harnesses shared
counters to infer victim program secrets.

A. MetaLeak-T: Exploiting Integrity Tree Sharing

In all secure processor architecture designs, integrity tree
is inherently one logical structure per memory controller and
shared across all running processes. This leads to a new aspect
of memory sharing among processes by design. Figure 9
illustrates how different levels of integrity tree node lead
to sharing across different regions of data. While physically
contiguous memory pages may share tree leaf nodes (①),
metadata sharing can be achieved among pages separated by
large data regions through intermediate tree nodes (②). Since
these different pages access the shared tree block for integrity

Counter
Cache …

…

…
…Tree

Cache

Access [D1]

…
…

Access [D2]

Ns
Evicted …

…

Access [DV]

…
…

No Access Access [DA]

Ns Hit

Access [DA]
❶ ❷ ❶ ❷

Initial (a) mEvict (b) Victim (c) mReload

NsMiss

SlowFast

Shared Tree Block (Ns)
Attacker Victim

Ns
Read

Fig. 10: MetaLeak-T attack steps: a) Ns eviction through indirect access of non-shared attacker page (D1 and D2); b) Victim’s
secret-dependent execution; c) Inferring victim secret by reloading Ns using non-shared DA.

0 5 10 15 20 25
mEvict+mReload Trace Over Time

150

200

250

300

La
te

nc
y

(C
yc

le
s)

0 1 1 0 1 0 0 1

Transmission Boundary

(a) Simulated secure architecture

0 5 10 15 20 25
mEvict+mReload Trace Over Time

500

550

600

650

700
La

te
nc

y
(C

yc
le

s)

0 1 1 0 1 0 0 1

Transmission Boundary

(b) Intel SGX

Fig. 11: Latency trace for transmitting ‘01101001’ in
the MetaLeak-T covert channel. Each band denotes one-bit
transmission window (separated by a hit in the boundary
set). A spy’s reload hit of the shared metadata block in the
transmission set is decoded as bit ‘1’, otherwise bit ‘0’.

verification, it is possible to exploit a timing attack in a shared
memory fashion without actually sharing program data.

We formulate MetaLeak-T that exploits the aforemen-
tioned implicit memory sharing through security metadata.
Specifically, MetaLeak-T observes victim page access activity
through monitoring accesses to shared tree nodes. Compared
to data cache attacks, implementing integrity tree cache attacks
presents two major challenges: 1) Program execution can only
directly initiate data access, not metadata access; 2) To observe
tree cache activities, the attacker’s process needs to enforce
longer access paths (as shown in Figure 5d), which requires
additional indirection through counter metadata. To tackle
these challenges, we design a new exploitation technique–
mEvict+mReload, with three main steps (Figure 10):
Step 1: mEvict—Evict Shared Integrity Tree Blocks. In this
step, the attacker ensures that the shared integrity tree block
for observing the victim’s activity (i.e., Ns) is evicted from
the metadata cache. Since the attacker cannot directly access
integrity tree blocks, it instead creates a set of data blocks (i.e.,
D1 and D2 in Figure 10a) whose encryption counter blocks
map to tree nodes corresponding to the same set as Ns. Note
that the data block accesses must incur miss in data cache
(and their corresponding encryption counters must also miss
in the counter cache). As such, in order to verify the counter
integrity, the corresponding tree nodes will be accessed, filling
the metadata cache set containing Ns. This ensures that the
Ns is evicted from the cache after the mEvict step.
Step 2: Idle. In this step, the attacker triggers victim execu-

215 218 221 224 227 230 233

Spatial Coverage Region (Bytes)

6000

7000

8000

m
Ev

ict
+m

Re
lo

ad
In

te
rv

al
 (C

yc
le

s)

Fig. 12: mEvict+mReload operation and corresponding spatial
coverage regions as exploited tree node level changes from leaf
to top in the SCT tree.

tion and waits for her secret-dependent access to complete.
As illustrated in Figure 10b, the victim’s data access leads to
either Ns being brought into the metadata cache (if DV is
accessed) ❶ or Ns not cached (if DV is not accessed) ❷.
Step 3: mReload—Infer Victim Secret through Shared Tree
Node Caching State. Finally, the attacker measures the access
latency of a data block (DA) whose counter block shares the
same tree block as the victim’s DV (i.e., Ns). As demonstrated
in Section V, the access latency of DA can be used to infer
the corresponding security metadata caching state. Figure 10c
illustrates that ❶ fast access to DA means victim access to DV

in Step 2, whereas ❷ slow access to DA indicates no victim
access to DV . Based on the data access latency correlated with
integrity metadata accesses, the victim secret can be inferred.

MetaLeak-T Covert Channel. We first demonstrate
MetaLeak-T in a covert channel. In this attack, a trojan uses
two tree nodes (i.e., two metadata blocks) mapped to two
different cache sets for covert communication: one set to
transmit bit information (i.e., access for bit ‘1’, no access for
bit ‘0’), and the other set to define a bit boundary. The spy
monitors activity in these two sets using mEvict+mReload.
Between each access in the boundary set by trojan, if trojan’s
access is detected in the transmission set (i.e., shorter latency
in mReload), bit ‘1’ is decoded (‘0’ otherwise). The covert
channel transmits 1000 bits using this communication proto-
col. Figure 11 shows a snippet of the latency trace observed
by the trojan. Overall, we observe 99.3% bit accuracy in
SCT (Figure 11a) and 94.3% bit accuracy in SGX’s SIT
configurations (Figure 11b). Figure 12 shows the average
mEvict+mReload intervals when using different levels of tree
nodes as shared memory. Note that the temporal resolution
of MetaLeak-T decreases with the increase in tree node level,

Initial (a) mPreset (b) Victim (c) mProbe

M M

M

M

M

… M M

M

M

M

…
Encryption Counters

Tree Counters

Write [D1, D2]

M M

M

M

M

M

M

Write [DV] No Write❶ ❷

M M

M

M

M

M

M

Write [D1]  Read [DA]❶ ❷

FastSlow

Write [D1]  Read [DA]

Overflow &
Re-encrypt

M M

Updated Counter
Saturated Counter

D1 D2 DV

Fig. 13: MetaLeak-C attack steps: a) Preset the shared integrity tree counter by writing to attacker-controlled memory (D1 and
D2); b) Victim’s secret-dependent write; c) Inferring victim secret by performing one write to attacker-controlled block (D1)
and subsequently timing read latency of a block (DA) not belonging to this sub-tree to detect counter overflow. Pattern-filled
counters indicate the counters updated during each step. The color-filling in blocks denotes the counter saturating status.

but with a higher possibility of sharing due to the larger data
coverage for a tree node (i.e., 32KB for leaf nodes), which
increases exponentially as tree level increases.

B. MetaLeak-C: Exploiting Counters for Write Monitoring

As discussed in Section IV, when a minor counter over-
flows, all memory blocks corresponding to that counter sharing
group (or sub-tree of the integrity tree) require re-encryption
(or re-hashing in SCT), which results in highly observable
latency variations in subsequent memory accesses. This ob-
servation can be maliciously utilized to observe victim write
activity by an attacker. If the attacker manages to share a
counter the victim (e.g., tree counters in SCT), then the counter
can be preset such that one victim write will saturate the
counter, allowing the attacker to detect victim write at a
later stage by simply performing one addition write to trigger
counter overflow. However, effectively observing victim writes
through counter overflow has several challenges: i) To ensure
that victim write saturates the target counter, the attacker needs
to strategically set the state of the counter prior to victim
execution, which is difficult since the attacker does not know
the runtime state of the counter; ii) Ensuring the attacker’s
timed read gets delayed by the ongoing re-encryption process
so that it can be observed. To tackle these challenges, we
present MetaLeak-C- that exploits shared counters with the
following three steps (illustrated in Figure 13):

Step 1: mPreset—Preset the State of Shared Counter. The
key target of this step is to ensure that the counter is set
to an attacker known state so that it can be probed later to
detect victim’s write activity. While the preset state can be
any predetermined value, for simplicity, we assume that the
attacker wants to preset the counter so that one victim write
saturates the counter. To do that, the attacker first determines
the counter state by resetting it. This can be done by the
attacker continuously writing to many several data blocks that
map to this counter (i.e., D1, D2, ...) and after each write,
timing the memory read latency by loading a separate memory
block (i.e., DA). Note that DA does not need to belong in
the same sub-tree under the counter targeted for overflow.
However, there are two issues that need to be addressed: i)
writes are typically not performed immediately, rather, they
are buffered at the memory controller’s write queue and

later serviced under the arbitration of the scheduling policy;
ii) while writes are pending in the write queue, subsequent
writes to memory blocks present in the queue can get merged
together. These issues can impact both the perceived counter
state during preset as well as hinder the attacker’s visibility
on counter overflow by reordering the timed read. To address
these issues, we flush the write queue by performing redundant
writes to blocks outside of the sub-tree coverage (similar to
DA). Once the attacker observes an overflow in the target
counter, its state is now known and can be preset to any desired
state. The attacker then performs 2n − 2 total writes (for an
n-bit counter) to preset the counter so that it is one write short
of saturation (Figure 13a).
Step 2: Idle. The attacker then waits for victim’s execution.
As illustrated in Figure 13b, if victim performs one write to
DV (that shares the same integrity tree counter) ❶, it will
saturate the counter. Any further update to this counter will
trigger an overflow. In contrast, if the victim does not perform
any write utilizing this counter, it remains unchanged ❷.
Step 3: mOverflow—Infer Victim Secret through Counter
Overflow. Once victim execution is complete, the attacker
probes the state of the counter to infer if the victim has indeed
performed any write. As we set the counter to 2n − 2 in
mPreset, if the victim performs one write operation, then
one attacker write (i.e., to D1) will overflow the counter
(Figure 13c). Conversely, if overflow is not observed, the
victim did not perform any write. We use a timed read
latency to DA to determine if the counter has overflown after
performing one write to D1.

While we monitor for exactly one victim write here, these
steps can be generalized to infer upto x victim writes by
presetting the counter to 2n−x+1 and observing the number of
writes needed to induce an overflow in the mOverflow step.
In addition, compared to MetaLeak-T, MetaLeak-C does not
require any metadata eviction and can naturally incur without
requiring data block eviction (such as in persistent memory
applications where critical sections are written back to memory
immediately). Note that the temporal resolution of MetaLeak-
C can be limited due to the set of writes needed to overflow a
counter. However, under TEE, the attacker can perform fine-
grained stepping of victim execution [18], [20], [25], achieving
attack synchronization even with long attack steps.

0 20 40 60 80 100
Spy's Write Sequence

102

103

104

Re
ad

-o
bs

er
vi

ng

La
te

nc
y

(C
yc

le
s)

(49) (9) (31) (14)

01001111 01110111 01100001 01110010

Fig. 14: Spy observed write latency traces from SCT for 4
transmission window (inferred transmission data is in inset).

MetaLeak-C Covert Channel. To demonstrate the practi-
cality of MetaLeak-C, we design a covert channel where a
trojan process transmits secret symbols by encoding values
through the number of writes to a selected memory block
(i.e., modulating minor counter values). A separate spy process
infers the trojan-encoded symbols by observing additional
writes required before the targeted counter overflows. Since
the processor contains 7-bit minor counters in the integrity
tree (detailed in Section VII), MetaLeak-C can transmit a 7-
bit symbol at a time for each counter modulation. Specifically,
in the mPreset step, the spy presets the minor counter.
Subsequently, the trojan issues s writes, which corresponds
to the 7-bit symbol to transmit. Finally, the spy decodes the
symbol by checking the number of additional writes for the
overflow. If the spy needs m additional writes to trigger the
overflow, then a secret symbol with value 27−m is decoded.
Notably, mOverflow also resets the counter to 0. As a result,
the mPreset step is essentially not needed after initial setup.
We perform experiments with multiple runs of 1000-symbol
transmissions. Figure 14 shows a snippet of the trace for 4
consecutive transmissions. Our results show that MetaLeak-
C can manifest as a highly accurate covert channel with an
average 99.7% transmission accuracy.

VII. EXPERIMENTAL SETUP

To systematically evaluate microarchitecture security in
secure architectures, we investigate representative designs in
both academic works as well as real-world hardware with
SGX. In particular, for SGX, we setup the system on an
Intel Core i7-9700K processor and run the attacker and victim
processes inside enclaves. Due to the lack of commercial
prototypes for academic proposals, we extensively model state-
of-the-art secure architectures [12], [14] using the cycle-level
gem5 simulator [89] under full system simulation. We model a
combination of secure architecture configurations considering
mainstream encryption and integrity checking schemes (with
SCT [14] and HT [12]). The key architecture parameters in
the simulator and Intel SGX are listed in Table I.

VIII. CASE STUDIES OF METALEAK ATTACKS

In this section, we perform case studies on real-world
applications to evaluate the proposed MetaLeak attacks in
secure processor architecture designs.

Hardware Configurations

Simulated architecture configuration

Processor Quad-core OoO x86 CPU
L1 I/D-Cache Private, 32KB, 8-way, 1-cycle hit
L2 Cache Private, 1MB, 4-way, 10-cycle hit
L3 Cache Shared, 8MB, 16-way, 40-cycle hit

Mem. Ctrl. 64 RD & WT queue, FR-FCFS, open-row
8-way 256KB counter & Tree cache

Main Memory 64GB, dual channel, 2 ranks/channel
Crypto engine 20-cycle AES latency
Encryption Counter-mode encryption, SC (64-bit major, 7-bit minor counters)

Integrity tree
HT: Hash tree, 8-ary BMT, 6-level tree [12]
SCT: Split-counter tree, 32-ary L0, 16-ary L1-L5 [14], [15]
Leaf level counters: 56-bit major, 7-bit minor

SGX hardware configuration

Processor Intel Core i7-9700K, 93.5MB EPC
Encryption Counter-mode encryption, 56-bit monolithic counters

Integrity tree SIT: 56-bit monolithic counters, 8-ary
4-level tree, leaf tree node (L0) covers one data page [67], [87]

TABLE I: Simulated secure processors (Top) and the SGX
hardware configurations (Bottom).

1 encode_one_block (...) {
2 ...
3 /* Encode the coefficients */
4 for (k = 1; k < DCTSIZE2; k++) {
5 if (block[jpeg_natural_order[k]] == 0) {
6 r++;
7 } else {
8 ...
9 /* Check for out-of-range coefficient */

10 if (nbits > MAX_COEF_BITS) { ... }
11 }
12 }

Listing 1: Exploited gadget in libjpeg.

A. Attacks on Simulated Secure Processor Designs

We demonstrate MetaLeak side channels against an image
processing application in the secure processor architecture
with a split-counter tree design (SCT) over encryption coun-
ters. The application uses the open-source libjpeg library,
to convert input images to compressed JPEG format. The
algorithm first generates blocks of AC coefficients for input
image blocks. A per-block entropy is computed by applying
the Huffman coding over the sets of AC coefficients, which
represents changes in image patterns across blocks. The en-
tropy blocks are leveraged to derive new blocks of compressed
coefficients, which are utilized to generate the output JPEG
image. Listing 1 shows the code snippet of the encode_-
one_block() function from libjpeg that updates the
compressed coefficient blocks by scanning the entropy array
(i.e., block[][]). An attacker observing victim accesses to
lines 6 and 10 in Listing 1 can obtain the execution trace and
learn about the status of the entropy (i.e., coefficient change),
which contains information about discernible features in the
original image (i.e., sharp color gradient changes). Afterwards,
the attacker can launch a local image conversation pipeline
with libjpeg starting from a blank image. During this
process, the inferred entropy information is used to guide
the generation of the compressed coefficients, which can
potentially yield a local image similar to the original one.

1) Exploitation using MetaLeak-T: We observe that when
encode_one_block() function executes lines 6 or 10,

Oracle

Original

MetaLeak

Fig. 15: Image reconstruction from the libjpeg program.

either variable r and nbits is loaded, which corresponds
to two different pages by default. Access to nbits indicates
a non-zero change of coefficient and access to r is used to
delineate each loop iteration. To obtain tree node sharing with
r and nbits, we exploit the per-core free page management
mechanism in the Linux operating system to precisely map
victim pages to the attacker-controller page frames [58], [90].
The two data pages are positioned with their corresponding
encryption counter blocks attached sufficiently apart in the
SCT. The attacker then carefully allocates two data blocks
DA1 and DA2 such that their encryption counter blocks share
the leaf-level tree node block with those of variable r and
nbits, respectively. Once the desired sharing is achieved,
the attacker launches mEvict+mReload to observe the victim’s
access. Figure 15 illustrates the original input images and the
reconstructed images based on the observed access patterns. To
highlight the maximum possible leakage using this function,
we include the Oracle case, which reconstructs the image
based on page accesses detected through code instrumentation.
With an overall accuracy of 94.3%, we observe that the
reconstructed images are close to the oracle cases, and retain
considerable details of the original images.

2) Exploitation using MetaLeak-C: We further mount
MetaLeak-C against the vulnerable code in libjpeg (List-
ing 1). Specifically, as shown in line 6, the variable r
is also updated if the corresponding coefficient change of
the block in the image is zero. Such write activity can be
potentially observed using the MetaLeak-C that manipulates
counter overflow to monitor memory writes. With MetaLeak-
C, the attacker achieves a minor counter sharing at the 2nd

level of the tree in the verification path of r, using the
same technique in Section VIII-A1. Following the attack
formulation in Section VI-B, the attacker performs mPreset
on the shared tree counter. After victim execution, the attacker
performs mOverflow to determine the number of additional
writes required for overflow, thereby detecting if the victim
performed any write to r. If mOverflow needs only one
attacker write, this means the victim performed a write to
r. Note that attacker writes to update tree counter (during
both mPreset and mOverflow) are distributed across dif-
ferent data blocks to avoid overflowing counters below the
target level (i.e., encryption counter). Overall, MetaLeak-C can

successfully recover zero-elements in the entropy blocks with
97.2% accuracy.

B. Attacks on Systems with the SGX Processor

Intel’s TEE solution (SGX) incorporates one of the most
comprehensive implementation of secure processor architec-
tures in the industry. Particularly, SGX (i.e., SGX client)
integrates counter-mode encryption and tree-based integrity
verification for data stored in a protected memory region,
called Enclave Page Cache (EPC). Based on prior studies [67],
[87], Intel SGX managed by the Memory Encryption Engine
(MEE) maintains an 8-ary 4-level counter tree. Each level
denoted as L0, L1, L2, and L3. L3 is the root level secured on-
chip. Each 64B tree node block consists of eight 56-bit mono-
lithic counters and a 64-bit hash. At the leaf level (L0), each
tree counter covers 8 encryption counter blocks, collectively
mapping to one page of EPC data blocks. As a result, for an
EPC page (with index p) and a specific integrity tree level (l),
the set of EPC pages sharing a tree block with page p at the lth

level can be derived as: {
[
p−1
Al

]
·Al + x|x ∈ {1, 2, ..., Al}}.

Given a victim’s physical block or page to monitor, an attacker
can determine the EPC pages sharing the same integrity tree
block with the target at the desired level. Specifically, a group
of 1, 8, and 64 consecutive EPC pages share the same tree
block in L0, L1, and L2, respectively. Note that unlike the
MetaLeak-T attack demonstrated in SCT (Section VIII-A1),
the attacker cannot exploit the leaf level (i.e., L0) in SGX
since one L0 SGX tree block maps to only one physical page,
which would not be shared between two domains (no explicit
data sharing). As a result, we target the shared tree block in
L1 by allocating attacker’s physical page such that it is within
the same 8-page group as the victim’s target page. Finally,
given the large size of counters used in SGX’s integrity tree
(56-bit monolithic), triggering counter overflow is impractical
under MetaLeak-C. The related SGX parameters are shown in
Table I. In this section, we demonstrate cryptographic secret
leakage from SGX using MetaLeak-T.
Attack Setup. Before mounting MetaLeak, the attacker must
be able to fulfill two prerequisites: i) obtain latency profile
corresponding to different levels of metadata availability on-
chip (Figure 7), and ii) share specific integrity tree block with
the victim. As a privileged attacker with control over OS,
attacker can directly observe and control which EPC frame is
provided for victim enclave page allocation through OS inter-
vention, allowing attacker to create integrity tree co-location
at preferred level. Additionally, attacker can use the SGX-
step framework [25] to monitor and frequently interrupt victim
enclave execution to perform mEvict operation. In particular,
we interrupt enclave execution every 500 cycles (by setting the
APIC timer interrupt frequency) to ensure mEvict+mReload is
performed at each required victim iteration.

1) Attacking Modular Exponentiation in libgcrypt:
We now demonstrate MetaLeak-T on vulnerable cryptographic
algorithm implementations. The RSA algorithm in
libgcrypt 1.5.2 uses the square-and-multiply arithmetic
(code snippet shown in Listing 2). In this algorithm, either the

1 gcry_mpi_powm (...) {
2 ...
3 /* Main loop */
4 for (;;) {
5 /* Square operation */
6 _gcry_mpih_sqr_n_basecase(...);
7 /* Check if exponent bit is 1 */
8 if ((mpi_limb_signed_t)e < 0) {
9 /* Multiplication operation */

10 _gcry_mpih_mul_karatsuba_case(...);
11 }
12 }

Listing 2: Exploited gadget in libgcrypt.

0 5 10 15 20 25
mEvict+mReload Trace Over Time

200

400

600

800

La
te

nc
y

(C
yc

le
s)

101001

Square Multiply

Fig. 16: Latency observation traces with mEvict+mReload for
secret exponent bit sequence ‘100101’.

square (line 6) or both square and multiplication operations
(lines 6 and 10) are performed based on the secret exponent
bit value (i.e., ‘0’ or ‘1’ correspondingly). We find that the
_gcry_mpih_sqr_n_basecase() (i.e., square) and
_gcry_mpih_mul_karatsuba_case() (i.e., multiply)
functions reside in separate pages (i.e., when compiled using
./configure -disable-asm). We set up an enclave
running encryption with this libgcrypt library. The
attacker first achieves integrity tree sharing with victim EPC
pages containing the square and multiplication functions (as
discussed in attack setup). Once integrity tree node sharing
is established, the attacker launches mEvict+mReload to
monitor the aforementioned two functions and utilizes the
access pattern to deduce the secret exponent. Figure 16 shows
attacker traces observing data read latency of blocks sharing
the same tree block as either the square or multiply function.
From our evaluation, we observe an overall accuracy of 91.2%
in recovering the secret exponent from an SGX enclave with
MetaLeak-T. We additionally run this experiment in the
simulated secure architecture with SCT (Section VII), which
achieves 95.1% accuracy.

2) Attacking Private Key Loading in mbedTLS: Now we
discuss how an attacker can exfiltrate private exponents of
RSA from mbedTLS v3.4.0. Security of RSA key depends on
the secrecy of its private components: two large prime numbers
(p and q) and a private exponent (d), which is computed from
p and q (i.e., d = e−1mod((p− 1)(q − 1))). e is a public ex-
ponent. The private key loading implementation in mbedTLS
library [91] uses modular inversion to compute d. Specifically,
(p− 1)(q − 1) is computed using two basic arithmetic opera-
tions [92], right shifts and subtractions (through mbedtls_-
mpi_sub_mpi() and mbedtls_mpi_shift_r() func-
tions, respectively). The secret exponent d can be computa-
tionally recovered given that access pattern traces for both
of these functions are available for each iteration [91], [93],

250

450

650 Right Shift

0 5 10 15 20 25 30 35
mEvict+mReload Trace Over Time

250

450

650 Subtraction

La
te

nc
y

(C
yc

le
s)

Fig. 17: mEvict+mReload traces to detect access to
mbedtls_mpi_shift_r() (top) and mbedtls_mpi_-
sub_mpi() (bottom).

[94]. These two functions (corresponding to two different EPC
pages) are placed under two different sub-trees of the integrity
tree. We use mEvict+mReload to recover access patterns to
each of these functions by exploiting tree sharing in L1.
Based on the observation from Figure 7, we set 600 cycle
latency as the timing threshold for integrity tree leaf hit (and
miss). Figure 17 shows mEvict+mReload traces for both Shift
and Sub operations. Overall, we observe 90.7% accuracy in
detecting Shift and Sub accesses.

IX. DISCUSSIONS

A. Implication of MetaLeak on Microarchitecture Security

Firstly, MetaLeak unveils a new source of leakage vulnera-
bility. Since TEE (e.g., SGX) excludes side channels from the
threat model, there have been many works demonstrating side
channels inside TEE [18], [20], [95], [96]. However, most of
such prior studies utilize known microarchitectural vulnerabili-
ties already exploited in non-privileged settings (e.g., conflicts
on caches [2]), with the objective of harnessing adversarial
privileged access to achieve fine-grained victim execution con-
trol (e.g., zero stepping [25]). In contrast, MetaLeak exploits
metadata and the highly distinguishable memory access timing
due to metadata management to mount side channels, which
exposes a new vulnerability uniquely tied to the design of
modern secure processor architectures.

Secondly, while prior defenses including obfuscation and
partitioning [28], [30], [31], [43], [97], [98] can successfully
mitigate conventional cache attacks (e.g., Prime+Probe [2]),
they are ineffective against MetaLeak. The key reason is that
mainstream protection schemes assume there is no sharing
of data, both readable and writable, across untrusted do-
mains, which is plausible in secure processors as metadata
is shared and updated at runtime. Specifically, randomized
cache techniques [28], [43], [44], [46], [54] perform random-
ization for address-to-cache mapping to disrupt the creation
of eviction set. However, MetaLeak does not rely on set-
based eviction for sensing conflicts (a property similar to
FLUSH+RELOAD [3]). In particular, in MetaLeak-T, the at-
tacker only monitors the reload latency of the shared metadata
block with mReload. To mitigate cache side channels on
shared data, secure cache proposes to duplicate shared read-
only memory among untrusted domains. However, duplication

0 2000 4000 6000 8000 10000 12000
of Memory Access

0%

25%

50%

75%

100%

Ac
cu

ra
cy

 o
f E

vi
ct

io
n

Fig. 18: Accuracy of eviction with cache randomization.

is problematic over writable data due to cache coherence
issues [28]. For the same reason, although existing cache
partitioning solutions [30], [31] can defeat non-data sharing
side channels, they do not defend against MetaLeak. Notably,
the root cause of MetaLeak is that the metadata mechanism
is designed without consideration of side channels, indicating
the need to rethink secure architecture design.
Scope of MetaLeak Attacks. MetaLeak mainly manifests
in secure architectures employing counter-mode encryption
and integrity tree-based verification, which offers strong data
protection. Alternative to counter-mode encryption, several
TEE implementations (e.g., AMD SEV and SGX-server [99],
[100]) utilize other encryption modes such as AES-XEX and
AES-XTS [101], [102]. These adopt an address-dependent
nonce/tweak derived from the block address, which eliminates
the use of counters and integrity trees with the sacrifice of
security guarantees to memory systems. MetaLeak does not
apply to those secure mechanisms. Note that recent stud-
ies have shown compromises of those commercial solutions
(e.g., recent AMD SEV-SNP), including exfiltration of register
values [101], complete plaintext recovery from TEE [103],
and arbitrary code execution [101]. We believe the study of
MetaLeak could help guide future designs of secure processors
for microarchitecture security.

B. Effectiveness of Microarchitectural Attack Mitigation

Since MetaLeak-C exploits counter overflow handling tim-
ing, not cache timing, it is not impacted by cache related
defensive schemes. To validate the applicability of MetaLeak-
T when state-of-the-art cache defense [28] deployed, we quan-
tify the metadata eviction accuracy corresponding to different
numbers of additional cache block accesses. Using the open-
source repository of MIRAGE [104], we first access a target
memory block to bring it into cache, followed by accessing
many random memory blocks, and subsequently reload the
target memory block to determine its eviction accuracy (i.e.,
for the MetaLeak approach). In our experiments, we adopt
the default configuration of MIRAGE shown to be secure
against conflict-based cache attacks (i.e., Prime+Probe) by the
authors [28]. We use a two-skew cache with six additional
ways per skew (8 + 6 ways per skew). As demonstrated in
Figure 18, around 7000 random block accesses are sufficient to
evict the target block with more than 90% accuracy (assuming
a 16-way 256KB metadata cache). This indicates that existing
defenses, in particular cache randomization schemes, could not
effectively stop MetaLeak attacks.

C. Future Secure Architecture Designs

The underlying vulnerability of MetaLeak attack is the
use of a logically global integrity tree spanning the entire
memory. Intuitively, isolation of the tree can be done such
that mutually distrusted domains do not share non-root tree
nodes at any level. While resource isolation is a promising
mechanism to ensure security against side channels, parti-
tioning the integrity tree can be particularly challenging [88].
Isolation techniques that support only a limited number of
security domains with fixed tree sizes are subject to low
efficiency and limited scalability. To mitigate MetaLeak, future
secure architecture can leverage isolated and dynamic integrity
trees. Specifically, a per-domain dynamic integrity tree can
be allocated, and the coverage of the tree in each domain
can grow on-demand. However, unlike flat resources such as
cache, partitioning integrity trees and dynamically managing
them at runtime can involve non-trivial overheads (e.g., due
to chained rehashing and node re-positioning [105]), which is
on the critical path of program execution. Overall, a practical
mitigation should provide complete isolation among isolated
trees, flexible partitioning to prevent memory stranding and
low additional overhead for runtime metadata management.

To thwart encryption counter overflow-based attacks, it is
possible to either: i) ensure previous counter states are cleared
when counters are reassigned to different security domains; or
ii) associate counters with virtual address space, thereby mak-
ing temporal sharing across security domains impossible. Note
that these mitigations are exclusive to encryption counters.
Security issues concerning tree counter overflow in CT cannot
be resolved using the aforementioned approaches. Instead, tree
counter nodes must also be protected similar to the classical
integrity tree structure.

X. CONCLUSION

In this paper, we perform an extensive investigation of mi-
croarchitecture security in the design space of secure processor
architectures. Our work identifies the unique properties in
the metadata management mechanisms in secure processors,
which creates new attack vectors for information leakage.
We present MetaLeak, an end-to-end side channel framework
that exploits security metadata to exfiltrate program secrets in
secure processors. In particular, MetaLeak-T manipulates the
shared integrity tree blocks using mEvict+mReload, and
MetaLeak-C observes secretive write activity by modulating
counter states with mPreset+mOverflow. Evaluation on
real-world victim programs shows that the attack is highly
successful in both state-of-the-art academic design and the
SGX processors. Our study further indicates that the identified
vulnerabilities are uniquely tied with the design of secure pro-
cessors, and highlights the need to rethink secure architectures
for microarchitecture security.

XI. ACKNOWLEDGEMENTS

This work is supported in part by U.S. National Science
Foundation under CNS-2008339 and CNS-2340777.

REFERENCES

[1] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in IEEE ACSAC, 2006.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE S&P, 2015.

[3] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Security, 2014.

[4] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, “Attack directories, not caches: Side channel attacks in a
non-inclusive world,” in IEEE S&P, 2019.

[5] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in IEEE S&P,
2019.

[6] D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “Branchscope: A new side-channel attack on directional branch
predictor,” in ACM ASPLOS, 2018.

[7] M. H. I. Chowdhuryy, H. Liu, and F. Yao, “BranchSpec: Information
Leakage Attacks Exploiting Speculative Branch Instruction Execu-
tions,” in IEEE ICCD, 2020.

[8] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” in IEEE HPCA,
2018.

[9] J. Ravichandran, W. T. Na, J. Lang, and M. Yan, “Pacman: attacking
arm pointer authentication with speculative execution,” in IEEE ISCA,
2022.

[10] Y. Tobah, A. Kwong, I. Kang, D. Genkin, and K. G. Shin, “Specham-
mer: Combining spectre and rowhammer for new speculative attacks,”
in IEEE S&P, 2022.

[11] V. Costan and S. Devadas, “Intel SGX Explained.” IACR Cryptol.
ePrint Arch., 2016.

[12] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in IEEE MICRO, 2007.

[13] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption and
authentication,” ACM CAN, 2006.

[14] M. Taassori, A. Shafiee, and R. Balasubramonian, “Vault: Reducing
paging overheads in sgx with efficient integrity verification structures,”
in ACM ASPLOS, 2018.

[15] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in IEEE HPCA, 2018.

[16] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in IEEE MICRO, 2018.

[17] M. H. I. Chowdhuryy, M. Jung, F. Yao, and A. Awad, “D-shield:
Enabling processor-side encryption and integrity verification for secure
nvme drives,” in IEEE HPCA, 2023.

[18] I. Puddu, M. Schneider, M. Haller, and S. Čapkun, “Frontal attack:
Leaking control-flow in sgx via the cpu frontend,” in USENIX Security,
2021.

[19] C. Disselkoen, D. Kohlbrenner, L. Porter, and D. Tullsen,
“Prime+abort: A timer-freehigh-precision l3 cache attack using intel
tsx,” in USENIX Security, 2017.

[20] J. Van Bulck, F. Piessens, and R. Strackx, “Nemesis: Studying microar-
chitectural timing leaks in rudimentary cpu interrupt logic,” in ACM
CCS, 2018.

[21] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky cauldron on the dark land:
Understanding memory side-channel hazards in sgx,” in ACM CCS,
2017.

[22] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery, J. Torrellas, and C. W.
Fletcher, “Microscope: Enabling microarchitectural replay attacks,” in
IEEE ISCA, 2019.

[23] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in Springer CHES, 2017.

[24] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Mgx: Near-zero overhead
memory protection for data-intensive accelerators,” in IEEE ISCA,
2022.

[25] J. Van Bulck, F. Piessens, and R. Strackx, “SGX-Step: A practical
attack framework for precise enclave execution control,” in ACM
SsyTEX, 2017.

[26] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE
MICRO, 2014.

[27] W. Xiong and J. Szefer, “Leaking information through cache LRU
states,” in IEEE HPCA, 2020.

[28] G. Saileshwar and M. Qureshi, “Mirage: Mitigating conflict-based
cache attacks with a practical fully-associative design,” in USENIX
Security, 2021.

[29] Z. Lin, U. Mathur, and H. Zhou, “Scatter-and-gather revisited: High-
performance side-channel-resistant AES on GPUs,” in ACM GPGPU,
2019.

[30] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execu-
tion processors,” in IEEE MICRO, 2018.

[31] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” in IEEE HPCA, 2016.

[32] D. Townley, K. Arıkan, Y. D. Liu, D. Ponomarev, and O. Ergin,
“Composable cachelets: Protecting enclaves from cache side-channel
attacks,” in USENIX Security, 2022.

[33] T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“Mi6: Secure enclaves in a speculative out-of-order processor,” in IEEE
MICRO, 2019.

[34] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache
architecture thwarting cache side-channel attacks,” IEEE Micro, 2016.

[35] F. Yao, M. Doroslovački, and G. Venkataramani, “Covert timing
channels exploiting cache coherence hardware: Characterization and
defense,” Springer IJPP, 2019.

[36] M. H. I. Chowdhuryy and F. Yao, “Leaking secrets through modern
branch predictor in the speculative world,” IEEE TC, 2021.

[37] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Drama:
Exploiting dram addressing for cross-cpu attacks,” in USENIX Security,
2016.

[38] M. H. I. Chowdhuryy, R. Ewetz, A. Awad, and F. Yao, “R-saw:
New side channels exploiting read asymmetry in mlc phase change
memories,” in IEEE SEED, 2021.

[39] V. R. Kommareddy, B. Zhang, F. Yao, R. Ewetz, and A. Awad, “Are
crossbar memories secure? new security vulnerabilities in crossbar
memories,” in IEEE CAL, 2019.

[40] M. H. I. Chowdhuryy, R. Ewetz, A. Awad, and F. Yao, “Understanding
and characterizing side channels exploiting phase-change memories,”
IEEE Micro, 2023.

[41] M. H. I. Chowdhuryy, M. R. H. Rashed, A. Awad, R. Ewetz, and
F. Yao, “Ladder: Architecting content and location-aware writes for
crossbar resistive memories,” in IEEE MICRO, 2021.

[42] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss, “Net-
spectre: Read arbitrary memory over network,” in Springer ESORICS,
2019.

[43] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in IEEE MICRO, 2018.

[44] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and
M. Tiwari, “Understanding contention-based channels and using them
for defense,” in IEEE HPCA, 2015.

[45] A. Purnal, L. Giner, D. Gruss, and I. Verbauwhede, “Systematic anal-
ysis of randomization-based protected cache architectures,” in IEEE
S&P, 2021.

[46] T. Bourgeat, J. Drean, Y. Yang, L. Tsai, J. Emer, and M. Yan, “Casa:
End-to-end quantitative security analysis of randomly mapped caches,”
in IEEE MICRO, 2020.

[47] P. W. Deutsch, W. T. Na, T. Bourgeat, J. S. Emer, and M. Yan, “Metior:
A comprehensive model to evaluate obfuscating side-channel defense
schemes,” in IEEE ISCA, 2023.

[48] J. Szefer, “Survey of microarchitectural side and covert channels,
attacks, and defenses,” Springer Journal of Hardware and Systems
Security, 2018.

[49] M. H. I. Chowdhuryy, Z. Zhang, and F. Yao, “Beknight: Guarding
against information leakage in speculatively updated branch predic-
tors,” in IEEE ICCAD, 2023.

[50] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-based
side channel atacks,” in IEEE ISCA, 2017.

[51] J. Chen and G. Venkataramani, “Cc-hunter: Uncovering covert timing
channels on shared processor hardware,” in IEEE MICRO, 2014.

[52] F. Yao, H. Fang, M. Doroslovački, and G. Venkataramani, “COT-
Sknight: Practical defense against cache timing channel attacks using
cache monitoring and partitioning technologies,” in IEEE HOST, 2019.

[53] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks,” in
USENIX Security, 2018.

[54] W. Song, B. Li, Z. Xue, Z. Li, W. Wang, and P. Liu, “Randomized
last-level caches are still vulnerable to cache side-channel attacks! but
we can fix it,” in IEEE S&P, 2021.

[55] Y. Zhu, Y. Cheng, H. Zhou, and Y. Lu, “Hermes Attack: Steal DNN
Models with Lossless Inference Accuracy,” in USENIX Security, 2021.

[56] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest we remember: cold-boot attacks on encryption keys,” USENIX
Security, 2009.

[57] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing
them: An experimental study of dram disturbance errors,” in IEEE
ISCA, 2014.

[58] F. Yao, A. S. Rakin, and D. Fan, “Deephammer: Depleting the
intelligence of deep neural networks through targeted chain of bit flips,”
in USENIX Security, 2020.

[59] R. Zhang, C. H. Center, L. Gerlach, D. Weber, L. Hetterich, Y. Lü,
A. Kogler, and M. Schwarz, “Cachewarp: Software-based fault injec-
tion using selective state reset,” in USENIX Security, 2024.

[60] R. Elbaz, D. Champagne, C. Gebotys, R. B. Lee, N. Potlapally,
and L. Torres, “Hardware mechanisms for memory authentication: A
survey of existing techniques and engines,” Springer Transactions on
Computational Science IV, 2009.

[61] D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,” AMD,
2016.

[62] S. Johnson, R. Makaram, A. Santoni, and V. Scarlata, “Supporting intel
sgx on multi-socket platforms,” Intel Corporation, 2021.

[63] V. Rijmen and J. Daemen, “Advanced encryption standard,” FIPS,
2001.

[64] P. C. Kocher, “Timing attacks on implementations of diffie-hellman,
rsa, dss, and other systems,” in Springer Advances in Cryptol-
ogy—CRYPTO, 1996.

[65] T. Ichikawa, T. Kasuya, and M. Matsui, “Hardware evaluation of the
aes finalists.” in AES candidate conference, 2000.

[66] B. Gassend, G. E. Suh, D. Clarke, M. Van Dijk, and S. Devadas,
“Caches and hash trees for efficient memory integrity verification,”
in IEEE HPCA, 2003.

[67] S. Gueron, “Memory encryption for general-purpose processors,” IEEE
Security & Privacy, 2016.

[68] D. McGrew and J. Viega, “The galois/counter mode of operation
(gcm),” NIST, 2004.

[69] G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas,
“Efficient memory integrity verification and encryption for secure
processors,” in IEEE MICRO, 2003.

[70] W. E. Hall and C. S. Jutla, “Parallelizable authentication trees,” in
Springer LNSC, 2006.

[71] S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common counters:
Compressed encryption counters for secure gpu memory,” in IEEE
HPCA, 2021.

[72] M. Umar, W. Hua, Z. Zhang, and G. E. Suh, “Softvn: Efficient memory
protection via software-provided version numbers,” in IEEE ISCA,
2022.

[73] S. Lee, J. Kim, S. Na, J. Park, and J. Huh, “Tnpu: Supporting trusted
execution with tree-less integrity protection for neural processing unit,”
in IEEE HPCA, 2022.

[74] M. Dai, R. Paccagnella, M. Gomez-Garcia, J. McCalpin, and M. Yan,
“Don’t mesh around:side-channel attacks and mitigations on mesh
interconnects,” in USENIX Security, 2022.

[75] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring (s): Side
channel attacks on the cpuon-chip ring interconnect are practical,” in
USENIX Security, 2021.

[76] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour,
Y. J. Soh, Z. Wang, Y. Xu, S. R. Dulloor et al., “Basic performance
measurements of the intel optane DC persistent memory module,” arXiv
preprint arXiv:1903.05714, 2019.

[77] M. H. I. Chowdhuryy, Z. Zhang, and F. Yao, “Powspectre: Powering
up speculation attacks with tsx-based replay,” in ACM ASIACCS, 2024.

[78] Z. Zhan, Z. Zhang, S. Liang, F. Yao, and X. Koutsoukos, “Graphics
peeping unit: Exploiting em side-channel information of gpus to
eavesdrop on your neighbors,” in IEEE S&P, 2022.

[79] Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red alert for power leakage:
Exploiting intel rapl-induced side channels,” in ACM CCS, 2021.

[80] J. Yang, Y. Zhang, and L. Gao, “Fast secure processor for inhibiting
software piracy and tampering,” in IEEE MICRO, 2003.

[81] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “Aegis:
Architecture for tamper-evident and tamper-resistant processing,” in
ACM ICS, 2003.

[82] W. Shi, H.-h. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
efficiency counter mode security architecture via prediction and pre-
computation,” in IEEE ISCA, 2005.

[83] S. Chhabra and Y. Solihin, “i-NVMM: A secure non-volatile main
memory system with incremental encryption,” in IEEE ISCA, 2011.

[84] M. Ye, C. Hughes, and A. Awad, “Osiris: A low-cost mechanism to
enable restoration of secure non-volatile memories,” in IEEE MICRO,
2018.

[85] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and
J. P. Karidis, “Morphable memory system: A robust architecture for
exploiting multi-level phase change memories,” in IEEE ISCA, 2010.

[86] X. Wang, D. Talapkaliyev, M. Hicks, and X. Jian, “Self-reinforcing
memoization for cryptography calculations in secure memory systems,”
in IEEE MICRO, 2022.

[87] I. Anati, F. McKeen, S. Gueron, S. Gueron, S. Johnson, R. Leslie-
Hurd, H. Patil, C. Rozas, and H. Shafi, “Intel Software Guard
Extensions (SGX),” 2015. [Online]. Available: https://community.inte
l.com/legacyfs/online/drupal_files/332680-002.pdf

[88] M. Taassori, R. Balasubramonian, S. Chhabra, A. R. Alameldeen,
M. Peddireddy, R. Agarwal, and R. Stutsman, “Compact leakage-free
support for integrity and reliability,” in IEEE ISCA, 2020.

[89] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM CAN, 2011.

[90] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom, “Rambleed: Reading
bits in memory without accessing them,” in IEEE S&P, 2020.

[91] K. Q. Ye, M. Green, N. Sanguansin, L. Beringer, A. Petcher, and A. W.
Appel, “Verified correctness and security of mbedtls hmac-drbg,” in
ACM CCS, 2017.

[92] C. P. García, S. Ul Hassan, N. Tuveri, I. Gridin, A. C. Aldaya, and
B. B. Brumley, “Certified side channels,” in USENIX Security, 2020.

[93] O. Acıiçmez, S. Gueron, and J.-P. Seifert, “New branch prediction
vulnerabilities in openssl and necessary software countermeasures,” in
Springer IMACC, 2007.

[94] A. Cabrera Aldaya, R. Cuiman Marquez, A. J. Cabrera Sarmiento, and
S. Sánchez-Solano, “Side-channel analysis of the modular inversion
step in the rsa key generation algorithm,” International Journal of
Circuit Theory and Applications, 2017.

[95] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “Zombieload: Cross-privilege-boundary data
sampling,” in ACM CCS, 2019.

[96] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: Exploiting
Speculative Execution through Port Contention,” in ACM CCS, 2019.

[97] L. Giner, S. Steinegger, A. Purnal, M. Eichlseder, T. Unterluggauer,
S. Mangard, and D. Gruss, “Scatter and split securely: Defeating cache
contention and occupancy attacks,” in IEEE S&P, 2023.

[98] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, “Scattercache: thwarting cache attacks via cache set
randomization,” in USENIX Security, 2019.

[99] A. Sev-Snp, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, 2020.

[100] I. Corporation, “Intel software guard extensions (intel sgx) - key
management on the 3rd generation intel xeon scalable processor,” 2021.

[101] L. Wilke, J. Wichelmann, M. Morbitzer, and T. Eisenbarth, “Sevurity:
No security without integrity: Breaking integrity-free memory encryp-
tion with minimal assumptions,” in IEEE S&P, 2020.

[102] Intel, “Runtime Encryption of Memory with Intel® Total Memory
Encryption–Multi-Key (Intel® TME-MK).” [Online]. Available: https:
//www.intel.com/content/www/us/en/developer/articles/news/runtime-
encryption-of-memory-with-intel-tme-mk.html

[103] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “Cipherleaks: Breaking
constant-time cryptography on amdsev via the ciphertext side channel,”
in USENIX Security, 2021.

[104] gururaj s, “gururaj-s/mirage.” [Online]. Available: https://github.com/g
ururaj-s/mirage

[105] J. Szefer and S. Biedermann, “Towards fast hardware memory integrity
checking with skewed merkle trees,” in IEEE HASP, 2014.

https://community.intel.com/legacyfs/online/drupal_files/332680-002.pdf
https://community.intel.com/legacyfs/online/drupal_files/332680-002.pdf
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html
https://github.com/gururaj-s/mirage
https://github.com/gururaj-s/mirage

	Introduction
	Background and Related Works
	Microarchitectural Attacks and Defenses
	Secure Processor Architectures

	Threat Model
	Microarchitecture (In)security in Secure Processor Design Space
	Counter-mode Encryption Design
	Data Authentication
	Integrity Verification Tree Design

	Timing Characterization in Secure Processor Architectures
	MetaLeak - Side Channels Exploiting Security Metadata
	MetaLeak-T: Exploiting Integrity Tree Sharing
	MetaLeak-C: Exploiting Counters for Write Monitoring

	Experimental Setup
	Case studies of MetaLeak Attacks
	Attacks on Simulated Secure Processor Designs
	Exploitation using MetaLeak-T
	Exploitation using MetaLeak-C

	Attacks on Systems with the SGX Processor
	Attacking Modular Exponentiation in libgcrypt
	Attacking Private Key Loading in mbedTLS

	Discussions
	Implication of MetaLeak on Microarchitecture Security
	Effectiveness of Microarchitectural Attack Mitigation
	Future Secure Architecture Designs

	Conclusion
	Acknowledgements
	References

