
Seeds of SEED: NMT-Stroke: Diverting Neural Machine Translation
through Hardware-based Faults

Kunbei Cai
University of Central Florida

Orlando, FL, USA
caikunbei@knights.ucf.edu

Md Hafizul Islam Chowdhuryy
University of Central Florida

Orlando, FL, USA
reyad@knights.ucf.edu

Zhenkai Zhang
Clemson University
Clemson, SC, USA

zhenkai@clemson.edu

Fan Yao
University of Central Florida

Orlando, FL, USA
fan.yao@ucf.edu

Abstract—The rapid development of deep learning has signifi-
cantly bolstered the performance of natural language processing
(NLP) in the form of language modeling. Recent advances in
hardware security studies have demonstrated that hardware-
based threats can severely jeopardize the integrity of computing
systems (e.g., fault attacks for data at rest). Internal adversaries
exploiting such hardware vulnerabilities are becoming a major
security concern. Yet the impact of hardware faults on systems
running NLP models has not been fully understood.

In this paper, we perform the first investigation of hardware-
based fault injections in modern neural machine translation
(NMT) models. We find that compared to neural network
classifiers (e.g., CNNs), fault attacks on NMT models present
unique challenges. We propose a novel attack framework–NMT-
Stroke–that can maliciously divert the translation of a victim
NMT model by modeling memory fault injections with the
rowhammer attack vector. We design a fault injection strategy to
minimize bit flips needed, which would mislead the translation to
an arbitrary natural output sentence. Our evaluation on state-of-
the-art Transformer-based NMT models shows that NMT-Stroke
can effectively induce the attacker-desired and linguistically
sound translation by faulting minimal parameter bits. Our work
highlights the significance of understanding the robustness of
emerging NLP models with the presence of hardware vulnera-
bilities, which could lead to future new research directions.

I. INTRODUCTION

The unprecedented success of machine learning (ML) en-
ables its ubiquitous adoption in numerous domains [1]. Ma-
chine comprehension of natural languages has long been
considered as one of the core NLP tasks, which is increas-
ingly employed in security-sensitive application scenarios as
toxic comment detection [2], text generation [3] and question
answering [4]. As a representative sub-field of NLP, machine
translation aims to translate text or speech from one lan-
guage to another through language modeling. Recently pro-
posed Transformer-based neural translation models (NMT) [5]
demonstrate superior translation quality [6]. NMT models are
typically trained using a tremendous amount of text corpora
followed by a supervised tuning procedure with domain-
specific labeled texts. These models feature extremely complex
structures with an enormous number of internal parameters
(e.g., in billions [7]), which are prohibitively expensive and
time-consuming to train. Commercial-off-the-shelf NMT mod-
els are generally provided by leading companies that have ac-
cess to high performance computing platforms [8]. Therefore,
end users tend to directly use pre-trained models [9] that are
offered by trustful third-party vendors. Due to the security-
sensitive nature of NMT models, ensuring system integrity of
these applications are imperative.

Prior ML security studies largely focus on adversarial
examples where attackers attempt to mislead the target model’s

decisions by adding perturbations to the inputs (e.g., im-
ages) [10]–[12]. In the context of NLP, recent works show
that by adding special words in input sequences, attacker can
force the victim language model to output sickened sentences
containing certain keywords (e.g., toxic language) [13], [14].
Differently, recent hardware-based exploit demonstrates the
possibility of triggering faults in computer systems, allow-
ing direct tampering of internals of a victim (e.g., through
rowhammer [15]). Therefore, understanding the security im-
pact of such hardware vulnerabilities in the deep learning
paradigm is critical.

Several recent works have investigated the robustness of
convolutional neural networks (CNNs) to hardware faults [16],
[17]. These studies generally imply that flipping one or a set
of the most significant bits (MSBs) can drastically degrade the
accuracy of ML decision-making (e.g., image classification).
However, we note that attacking sequence-to-sequence neural
network models such as NMT exhibits unique characteristics
and challenges. Specifically, unlike classification tasks that
typically map a continuous input space to a finite output
space [13], many NLP tasks perform the mapping from
discrete input space to infinite output space. Therefore, an
attacker targeting NMT can potentially manipulate the model
to generate an arbitrary output text, empowering the adversary
with "outside-the-box" attack flexibility. On the other hand,
different from ML classifiers, the output of NLP models are
typically supplied to and inspected by human, thus will be
subject to human judgement. As a result, simplistic model
tampering can lead to un-natural texts (i.e., with grammar er-
rors or lack of fluency) and could be easily captured by human
inspectors, making successful tampering of NMT challenging.

In this paper, we aim to understand how fault attacks
manifest in neural translation models. To characterize the
robustness of NMT models, we study the effect of model
tampering with bit flips induced in individual model structures
and parameters. We explore how fault injections in the model
parameters could lead to compromised translation output im-
perceptible to human judges. To achieve the aforementioned
goals, we design a novel attack framework, called NMT-
Stroke, that judiciously flips bits in NMT model parameters.
We implement an efficient fault injection strategy that con-
siders the value distribution of model parameters in floating-
point representations. To ensure that the targeted bits can be
faulted in real systems, we augment NMT-Stroke by modeling
a rowhammer fault injector [15]. NMT-Stroke is a general
input attack that forces the victim NMT model to translate any
sequence in a specific source language to a targeted natural and
fluent sequence in the destination language. We evaluate NMT-
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Fig. 1: Overview of Transformer-based NMT architecture.

Stroke on state-of-the-art Transformer-based machine transla-
tion models including Google’s T5 [7] and the popular OPUS-
MT from academia [18] with 6 different architecture/language-
pair configurations. Our results show that NMT-Stroke can
achieve high exact match rate and post-attack translation qual-
ity (measured using the BLEU score [19]) among all models.
Our work reveals that it is indeed viable for a hardware-based
fault attacker to tamper neural machine translation models with
fluent and natural translation output. The main contributions
of this work are summarized as follows:
• We highlight the unique challenges and potential severity

of fault attacks in neural machine translation.
• We present a novel framework that aims to divert the

translation of normal/benign inputs to an attacker con-
trolled fluent and natural output.

• We comprehensively evaluate the effectiveness of NMT-
Stroke using state-of-the-art NMT models and a modeling
of the rowhammer attack. Our evaluation show that NMT-
Stroke only needs to induce a small amount of bit flips
among up to millions of model parameters.

• We discuss main insights about robustness of NMT
models that can be leveraged to build efficient and robust
NLP systems in the future.

II. BACKGROUND AND RELATED WORK

Neural Machine Translation. Prior studies have leveraged
recurrent neural networks (RNNs) [20], [21] to perform ma-
chine translation. However, the capability of these models
are typically limited due to the use of fixed-length vector,
making it less effective in dealing with long sequences [22].
The Transformer [5] built on the self-attention mechanism is
the breakthrough language model that demonstrates superior
translation quality and performance. At a high level, the Trans-
former adopts an encoder-decoder structure. In each encoder or
decoder layer, one set of (Wquery,Wkey,Wvalue) parameters
forms an attention head. Each input sentence passing through
an attention head generates three intermediate feature maps
called query, key and value. The attention head then maps
a query and a set of key-value pairs to an output. All the
output from multiple attention heads will be concatenated into
one final feature map, and then projected through Woutput,
resulting in the final values. Figure 1 illustrates the high-level
architecture of the Transformer.

State-of-the-art NMT models based on Transformers are
extremely large and complex software artifacts [6], [7]. To
accomplish high translation accuracy, modern NMT models
are generally trained on an extremely large text corpora (e.g.,

articles from Wikipedia) with extensive usage of hardware
resources for training, which can be prohibitively expensive
for many NLP clients. As a result, it has become preferable for
users to leverage pre-trained NMT models from credible third-
party vendors for fast deployment. In fact, Huggingface [23],
one of the most popular open-source NLP model providers,
hosts thousands of pre-trained models covering more than 140
languages. Due to the inherent security sensitivity nature of
natural language, ensuring security of NMT models is critical.
Security of Language Models. Many works have explored
ways to compromise ML models through input manipula-
tion [24]–[26]. Adversarial inputs have been extended to
various audio/language models in recent studies [11], [13],
[27], [28]. These attacks generally aim to induce a tampered
output through careful imperceptible perturbation of the input.
On the other hands, several very recent studies have observed
that hardware threats can severely compromise CNNs through
injecting faults on parameters and make it misbehave [17],
[29], [30]. These works mainly target CNN-based classifiers
and have shown to successfully compromise the prediction
accuracy for all inputs or a specific input by faulting model
weights. We note that the impact of hardware faults to modern
NLP models has not been well understood.
Hardware-based Fault Attacks. Rowhammer [15] is the
memory fault injection attack that exploits DRAM distur-
bance errors. Specifically, it has been shown that frequent
accesses to certain DRAM row (i.e., activation) can accelerate
leakage of the capacitor charge of DRAM cells in adjacent
rows [15], potentially inducing bit flips in them without the
need of direct access. The rowhammer bug appears commonly
in commodity DRAM chips and has been demonstrated to
tamper system integrity, leading to privilege escalation and
compromise of crypto keys [31], [32]. While many defenses
have been proposed from software and system levels [33]–
[37], these techniques are either ineffective in protecting
against all attack variants or may not be practical due to high
hardware cost. In fact, new sophisticated rowhammer attacks
have been developed over the years despite the various defense
mechanisms proposed and deployed [38]–[40].

III. THREAT MODEL

We assume an adversarial threat model where the NMT
model is deployed by a victim to a remote computing plat-
form (e.g., the cloud). The victim user downloads a pre-
trained NMT model offered by trusted third-party vendors
(e.g., Huggingface). Therefore, the integrity of the deployed
model is guaranteed. We assume that the attacker has the full
knowledge of the victim NMT model (including architectures
and model weights). This is evidenced by the fact that users
often leverage pre-trained language models publicly accessible
(Section II). Moreover, the attacker can exploit the rowham-
mer attack vector that introduces deterministic bit flips in a
victim application. The attacker has collected a bit-flip profile
corresponding to the DRAMs of the target machine, and can
perform memory massaging to carry out rowhammer attacks
at controlled locations using techniques as in [17], [41].

We assume that the attacker has possessions of a small
amount of test data. Note that in the context of machine
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Fig. 2: High level overview of the NMT-Stroke attack.

Layer Param. Type BLEU BLEU Drop

Multi-Head
Attention

Query (Q) 25.49±2.35 0.78%

Key (K) 25.39±1.08 1.17%

Value (V) 0.01±0 99.61%

Output (O) 0.01±0 99.61%

Feed-Forward
Network

FC1 0.08±0.19 99.30%

FC2 0.01±0 99.61%

Norm Layers - 1.67±6.47 93.50%

Generator
(Embedding) FC 0.14±0.15 99.50%

TABLE I: BLEU scores after randomly flipping exponent
MSBs of parameters in the OPUS-MT model.

translation, due to the generality of dataset (language pairs),
the attacker can obtain test dataset either through directly
accessing public repository [6], [42] or generate translation
sequences manually. Prior studies on machine learning tro-
janning attacks [28], [43] assume that attacker performs data
poisoning to pre-trained models and re-distribute them to
users to achieve certain attack goals (e.g., insert trojans). Our
proposed attack is different and potentially more dangerous
in that it performs runtime tampering after a trusted model is
deployed. Figure 2 shows an overview of the attack.

IV. CHARACTERIZATION OF FAULTS IN NMT MODELS

To understand the security threats of hardware faults on
NMT models, we comprehensively characterize the impact of
bit flips in various NMT model structures as well as parameters
(as discussed in Section II). To quantify the impact of faults,
we utilize the BLEU (bilingual evaluation understudy) [19]
score (in a range from 0 to 100), which is widely used
for evaluating the quality of language translation. Modern
NMT models are built with parameters under floating-point
representations. Note that while model quantization has been
widely studied for CNNs, leveraging low bit-width quantized
model for NMT without adversely sacrificing translation qual-
ity is challenging [44]. According to the IEEE 754 standard
specifications, a 64-bit floating-point number has 1 sign bit,
11 exponent bits and 53 mantissa bits (52 bits stored) [45]. We
characterize the impact of bit flips in different bit locations of
the 64-bit floating-point representation of model parameters.

We perform the fault characterization using the OPUS-MT
model for German-English translation (See Section VI for
more details). The default model has a BLEU score of 25.69.
Typically a value of BLEU score depends on the language-
pairs and training dataset. In terms of German-English trans-

Source Sentence: Der Text vermittelt sich auf diese angestrengte Weise 
jedoch kaum.

Original Translation: However, the source text makes barely any reference 
to this intense delivery.

Translation after one bit flip: of of of of of of of of of of (omitted). 

Fig. 3: Example output with a parameter’s exponent MSB flip.

lation, OPUS-MT has the state-of-the-art translation quality.
We supply 100 input sequences and evaluate the translation
quality of the faulted model (i.e., model with bit flips at
specific bit locations) by calculating the BLEU score for
the tampered translation and the reference translation. The
results are shown in Table I. Our investigation reveals two
critical observations: ¶ Bit flips at any locations excluding
the exponent MSBs do not cause noticeable degradation of
translation quality (measured as drop of BLEU). This is held
true even if we randomly introduce more than 10K flips to the
model. · When we target the MSBs of parameter exponents
exclusively, we find that a single bit fault injection can have
drastic and differing impacts on the translation output.

We observe that bit flips on exponent MSBs of dif-
ferent parameters exhibit completely different results. The
(Wquery,Wkey) parameters in the attention layer are insen-
sitive to single bit flip as we can see that the corresponding
BLEU score change is only around 1%. In contrast, single bit
flip on other parameters can disruptively change the translation
output, which yields close to 0 BLEU scores. We believe
that the higher robustness of (Wquery,Wkey) is due to the
fact that Wquery and Wkey parameters only participate in the
calculation of the weight coefficient of value. As a result,
the worst-case impact of flipping them is only to distract
attention, without destroying the semantics of output sentence.
We further explore the actual translation output for the cases
when there is a sharp BLEU drop. Figure 3 illustrates a
representative example translation output after one bit flip.
Particularly, we can see that the output sentence is com-
pletely disrupted into broken sentence with repeated words.
Obviously, while causing graceless drop in BLEU, attacks at
these parameters also break the fluency of output sequence.
Note that the recent work on fault attack against CNNs [16]
reveals a single bit flip on the MSB of a floating-point
parameter’s exponent can drastically degrade the prediction
accuracy. While enforcing a misclassification can potentially
be difficult to inspect, machine translation is often human-
oriented and the output of NMT models are subject to inherent
checking based on human judges. Therefore, such translation
anomaly can be easily flagged out as malicious. This motivates
us to explore the following question: Is it possible to inject
faults in NMT models so that the attacker could hijack the
output with a controlled and fluent language sequence? We
will present an attack framework aimed to achieve such a goal.

V. ATTACK METHODOLOGY

In this section, we present an overview of NMT-Stroke that
can divert the translation of a victim NMT model to adversary-
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controlled natural sentence.

A. Impact of Bit Flip in Floating-point Parameters

We first investigate how the value range of a floating
point number will influence the exponent MSB. Based on the
IEEE754 standard for 64-bit floating point, the exponent MSBs
of parameters with the absolute values less than 2 are always
0. Let ∆w be the absolute value change on a parameter w
before and after a bit flip. For a specific parameter w within
(−2, 2), the parameter itself always falls within (−2, 2) no
matter which position is flipped. Therefore, ∆w would be
relatively small. For w outside of (−2, 2), it is likely to incur
a huge value change after one bit flip in the floating point
form. It is possible that a parameter with a relatively small
gradient (i.e., ∇w) can still have large impact on the model’s
behavior due to considerable perturbation of its value by a
bit flip. In other words, different from quantized models, for
NMT models with floating-point parameter representations,
the influence of a parameter bit flip to the model output
depends heavily both on its ∆w and ∇w.

We analyze the distribution of parameters for T5 and
OPUS-MT (Figure 4). Due to normalization layers, the model
parameter values are almost distributed in the range of (−2, 2).
Note T5 is special for the following two reasons: 1) It is a
multi-task machine translation model that can translate English
to 3 target languages in one model; 2) Its model parameters is
distributed in a large range since it abandons the normalization
layer bias and places the normalization layers outside the
residual path [7]. The fact that parameter outside of (−2, 2)
can bring a larger weight change due to bit flips leads us to
develop an algorithm to locate bit flips by taking into account
the magnitude of the parameter values.

B. Value-aware Gradient-guided Bit Search

Based on the discussion in Section V-A, we aim to design
a bit search strategy that jointly considers the impact of ∆w
and ∇w when certain parameter is faulted. To reduce the cost
of the attack, we will identify the least number of bits to
flip in the model. We formulate NMT-Stroke as the following
optimization problem:

min
Wk

(L(f(x,W k); y)− L(f(x,W k−1); y)) (1)

Algorithm 1: NMT-Stroke Algorithm
Input : input x, NMT model f , weight W , loss L(; ), tampered

output y, current layer p, flipped bit number k.
Output: k, exact match rate and BLEU score
while exact match rate 6 Temr and BLEU 6 Tbleu do

Loss = L(f(x, {Wk}); y);
back-propagation L to achieve gradient ∇WL(f(x,Wk; y);
while p is not last layer do

Wp ←− layer p’s weight. p←− next layer;
Wsubset ←− concate(Wp[Index1],Wp[Index2]);
while w in Wsubset do

Choose the bit from 0th, 1th, 2th exponent bit and
sign bit that can generates the largest ∆w;

index = ∇w*∆w;
end
Choose the bit that generates the largest index and flip it.

Record layer loss Lp;
flip it back;

end
Lmin = min{L1, L2, . . . , Lp, . . . , Llastlayer};
Flip the bit that can generate Lmin;
k ←− k + 1;
compute exact mtach rate and BLEU score;

end
Return k, exact match rate and BLEU score;

where W is the floating-point representation of model param-
eters. W k denotes the model parameters with k bit flipped at
certain chosen locations and x represents the input sequence.
The NMT model performs function f(x,W ) for translation.
L(; ) is the cross-entropy loss between NMT output sequence
and the compromised output y. The sequence y denotes the
adversary-controlled output sequence for all translations. We
set the output of f(x,W k) as s = {s1, s2, . . . , sm}, and the
reference sentence as y = {y1, y2, . . . , yn} where both sm and
yn denote the token of sentence.

We develop an efficient value-aware gradient-guide algo-
rithm in NMT-Stroke that aims to choose the bits to flip with
the highest drop of loss. The algorithm performs an iterative bit
identification process. To account for the influence of bit flips
from both ∆w and ∇w, NMT-Stroke undertakes the bit search
from two sets of candidate parameters: the first set contains the
top n most influential parameters based on their ∇w (Tn

∇w),
and the second set includes the top m parameters with respect
to their absolute values, which always bring large ∆w for
parameters with values outside of (−2, 2). For each iteration,
we identify the layer-wise Tn

∇w and Tm
∆w and compute the

product of ∆w and ∇w (denoted as P) for each parameter
w (w ∈ Tn

∇w ∪ Tm
∆w). We then find a bit from a certain

parameter w that yields the largest P value for that layer.
For a model with l layers, we record l bits collected from
above steps. Finally, the bit that leads to the greatest loss
drop would be selected as the target bit to flip for the current
iteration. Such iterative process is continued until the attack
goal is reached (See Section VI). The detailed procedure is
listed in Algorithm 1.

Since faulting the exponent MSB either poses no changes
to the output or leads to unnatural sentences, we restrain
from flipping those bits (See Section IV). We also find most
of the 3th to 9th exponent bits are 1 in memory due to
the distribution of parameters. To better control the rate of
loss, we choose to only identify flips within the sign bit and
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Language
Pair

# of
Tokens

Bit flip
#

EMR
(%)

BLEU
Score

Bit flip #
RH

EMR (%)
RH

BLEU-Score
RH

T5-small 77M

en-de 14 43 98.81 96.11 77 94.91 91.76

en-fr 21 79 96.80 87.40 93 97.30 85.49

T5-base 248M

en-de 14 58 98.99 92.58 63 98.18 86.12

en-fr 21 39 98.21 88.24 48 91.31 87.38

OPUS-MT

104M de-en 16 57 98.78 89.59 80 97.00 86.04

106M fr-en 16 76 91.98 95.76 66 91.82 90.18

TABLE II: Evaluation of NMT-Stroke on NMT models. Columns with RH denote results considering rowhammer exploits.
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the 0th, 1th, 2th exponent bits in each weight parameter. We
observe that flipping those bits can generate an appropriate
size of ∆w. This is done to avoid excessive weight changes
that lead to difficulty of loss convergence.

VI. EXPERIMENTS SETUP

Evaluation Metrics. Besides the BLEU score, we also define
the Exact Match Rate (EMR) as another metric to evaluate the
effectiveness of NMT-Stroke. The EMR quantifies the ratio
of output sequences that exactly match with their referenced
output (i.e., the output translation at the attacker’s choosing).
We empirically set the threshold for attack success when the
EMR is above 90% and the BLEU score is higher than 85.
Software and Hardware setup. Our deep learning platform is
Pytorch 1.8 (python 3.8) that supports CUDA 11.3 for GPU
acceleration. We analyze the machine translation models on
Nvidia Tesla P100 GPU platform. To collect the bit flip profile
with respect to rowhammer, we perform memory templating
on a machine with an Ivy Bridge-based Intel i7-3770 CPU
and a dual-channel DDR3 DRAM memory setup.
NMT Models and Datasets. We configure state-of-the-art
Transformer-based NMT models including T5 [7] and OPUS-
MT [18]. Specifically, we run T5-small and T5-base with
English-German and English-French translation, and German-
English as well as French-English for OPUS-MT. We use
the popular WMT14 dataset [46] that has a combination of
multiple language pairs to evaluate NMT-Stroke. We adopt a
uniform 32-input batch size and run our experiments on 3000
sentences from the WMT14 test dataset.

Modeling the Rowhammer Attack for Fault Injections. To
evaluate the performance of NMT-Stroke when fault injections
are applied in real systems, we model a rowhammer attack
vectors. We perform a memory templating procedure that
collects fautable memory locations in the target DRAM system
as bit flip profile. Figure 5 illustrates the statistics of the bit
flip profile collected organized in 1→0 and 0→1 flip directions
in our test system. In order for NMT-Stroke’s bit flips to be
fautable by rowhammer, we incorporate additional constraints
in the bit search algorithm so that for each candidate bit
identified, we ensure its page offset matches with that of a vul-
nerable cell in certain DRAM row. If the bit is not rowhammer-
faultable, the search algorithm will skip and continue to the
next candidate bit.

VII. ATTACK EVALUATION

To evaluate the effectiveness of NMT-Stroke, we randomly
select one English sequence (with less than 50 tokens) from
the dataset as the attacker-desired output. For models with
other destination languages, the desired output is translated
into the corresponding destination language as the target
sequence. Table II illustrates the model configurations and the
bit flip results. As we can see, NMT-Stroke succeeds for all
the configurations. Specifically, NMT-Stroke reaches 98.20%-
EMR/91.08-BLEU on average for T5 models and 95.38%-
EMR/92.68-BLEU for OPUS-MT models. Notably, the num-
ber of bit flips required is less than 80 (i.e., 39 ∼ 79) for
all models with up to hundreds of millions of parameters. To
ensure exploitability of bit flips, we further instantiate NMT-
Stroke by modeling the rowhammer fault injector as described
in Section VI. The last three columns in Table II show
the identified flips and attack results. We find that for each
model, the number of required flips to achieve the attack goal
would increase slightly due to the additional constraints posed
from system level by rowhammer. The required bit flips are
almost in the same range (i.e., 48∼80 ) as the non-constrained
attack. Interestingly, in certain configuration (i.e., OPUS-MT
with fr-en), NMT-Stroke needs even less bit flips with the
consideration of rowhammer exploit. We carefully track the
targeted bits and observe that the rowhammer-unaware search
identifies multiple bit flips among normalization layers, which
mostly cluster in a small number of physical memory pages.
Differently, the rowhammer-constrained search tends to locate
bits across pages as the algorithm cannot pinpoint a DRAM
row that has the vulnerable cells all together. We conjecture



Architecture # of
Tokens

# of
bit flips

EMR
(%)

BLEU
Score

OPUS-MT

10 33 95.42 92.66

20 124 97.90 98.91

32 291 90.27 97.13

40 400 - -

T5-small

10 26 95.35 86.85

20 43 99.79 99.68

30 190 92.29 97.71

40 332 90.13 97.68

TABLE III: Impacts of the length of controlled output.

that too many bit flips in normalization layers can lead to
loss dropping along with a wrong direction, which eventually
requires flipping more bits to compensate.
Sensitivity to Sentence Length. Next, we investigate the
impact of output sequence length (i.e. the number of tokens)
to the effectiveness of NMT-Stroke. Specifically, we randomly
select sequences that have 10∼40 tokens and set them as
the controlled output for OPUS-MT (German-English) and
T5-small (English-German). As illustrated in Table III, with
the increase of output sequence length, the bit flips needed
drastically increase for both models consistently (e.g., from
26 to 332 for T5-small). Moreover, the search procedure is
not able to reach the expected EMR and BLEU thresholds for
OPUS-MT with output length greater than 40, which indicates
that it has higher robustness compared to the T5 model. We
identify that the output length is the key factor to influence
the success of NMT-Stroke.
Sensitivity to the Sequence Content. We further explore
the generality of NMT-Stroke by studying the impact of
sequence content. For this experiment, we collect 100 different
sequences (as the attacker-desired output) with the same length
(15 tokens). Figure 6 shows the distributions of required bit
flips for T5-small, T5-base and OPUS-MT. Overall, NMT-
Stroke is still effective in achieving the attack goal to all
sequence instances. However, we observe all models have
sensitivity to the content of adversary controlled sequence
(22∼131 for T5-small, 17∼103 for T5-base and 57∼171
for OPUS-MT). Notably, it is shown that OPUS-MT models
are more robust with respect to model bit flips, which is
consistent with our observations in sentence length sensitivity
study. Finally, although our hardware attack can achieve very
high success rates (average 93.22% in exact match rates and
95.73 in BLEU score), we recognize higher robustness of
the Transformer-based machine translation models. That is,
different from fault attacks in CNNs [16], [17] that can be
performed with almost 100% success rate and relatively small
number of bit flips, tampering NMT models is potentially
more difficult due to the representation of output as a natural
language sequence.

VIII. DISCUSSIONS

At a high level, NMT-Stroke tampers the internal of NMT
models by inducing faults to the model parameters. Recently
there are tremendous advances in integrity protection with
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Fig. 6: Sentence content sensitivity analysis.

the help of hardware root of trust. Notably, trusted execution
environment (e.g., Intel SGX [47]) provides strong security
assurance against adversaries who have gained control or
physical accesses to a victim system. Prior works have demon-
strated the use of security enclaves to build tamper-resistant
ML systems [48], which can be applied to guard against NMT
model tampering by NMT-Stroke. However, TEEs in commod-
ity hardware for deep and complex machine learning models
are still considered as immature due to the high performance
overhead [49], which is even more pronounced for language
models that have extremely large run-time footprint.

There is a recent trend to design secure hardware specialized
for AI [50]. We note that future secure AI hardware designs
could also take advantage of the inherent robustness of the ML
model itself. For instance, based on our fault characterization,
we observe that the most vulnerable bits largely come from
the normalization layer parameters, which typically involve
an very small amount in Transformer-based NMT models
(e.g., typically less than 0.05%). Moreover, the query and
key parameters that consume the bulk of the parameter space
are exceptionally robust to bit flips. This observation creates a
opportunity for future hardware designer to consider differen-
tiated protections (e.g., tiered integrity checking mechanisms)
for language models, which have the potential of releasing the
performance burden due to universal security assurance.

IX. CONCLUSION

In this paper, we perform the first study to investigate
hardware-based fault attacks in modern neural machine trans-
lation models. We systematically characterize the impact of
parameter bit flips and identify unique challenges for fault
attacks on NMT models. To address these challenges, we
present NMT-Stroke, a novel attack framework that can divert
the translation output for NMT to the attacker-controlled
natural output sequence. We design an efficient bit search
strategy that determines the most influential bits to flip to
achieve the adversarial goal. To ensure exploitability in real
systems, NMT-Stroke identifies fault locations by modeling
the rowhammer fault attack. Our evaluation on state-of-the-
art Transformer-based models show that NMT-Stroke can
successfully compromise the translation with a small amount
of bit flips. This work motivates the need to understand and
enhance the integrity of NLP models with the presence of
insecure hardware.

ACKNOWLEDGMENTS

This work is supported in part by U.S. National Science
Foundation under SaTC-2019536 and CNS-2147217.



REFERENCES

[1] F. Stahlberg, “Neural machine translation: A review,” JAIR, vol. 69, pp.
343–418, 2020.

[2] P. Fortuna and S. Nunes, “A survey on automatic detection of hate speech
in text,” ACM Computing Surveys (CSUR), vol. 51, no. 4, pp. 1–30, 2018.

[3] A. Gatt and E. Krahmer, “Survey of the state of the art in natural
language generation: Core tasks, applications and evaluation,” JAIR,
vol. 61, pp. 65–170, 2018.

[4] A. Arbaaeen and A. Shah, “Natural language processing based question
answering techniques: A survey,” in IEEE ICETAS, 2020, pp. 1–8.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in NeurIPS,
2017, pp. 5998–6008.

[6] L. Barrault, M. Biesialska, O. Bojar, M. R. Costa-jussà, C. Federmann,
Y. Graham, R. Grundkiewicz, B. Haddow, M. Huck, E. Joanis, T. Kocmi,
P. Koehn, C. Lo, N. Ljubesic, C. Monz, M. Morishita, M. Nagata,
T. Nakazawa, S. Pal, M. Post, and M. Zampieri, “Findings of the 2020
conference on machine translation (WMT20),” in ACL Conference on
Machine Translation, 2020, pp. 1–55.

[7] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning
with a unified text-to-text transformer,” JMLR, vol. 21, no. 140, pp.
1–67, 2020.

[8] S. Hong, M. Davinroy, Y. Kaya, D. Dachman-Soled, and T. Dumitraş,
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