
PowSpectre: Powering Up Speculation Attacks with TSX-based
Replay

Md Hafizul Islam Chowdhuryy
University of Central Florida

Orlando, Florida, USA
hafizul.islam@ucf.edu

Zhenkai Zhang
Clemson University

Clemson, South Carolina, USA
zhenkai@clemson.edu

Fan Yao
University of Central Florida

Orlando, Florida, USA
fan.yao@ucf.edu

ABSTRACT
Trusted execution environment (TEE) offers data protection against
malicious system software. However, the TEE (e.g., Intel SGX) threat
model exacerbates information leakage as attackers can enhance
and denoise the observations from hardware-based side channels
through controlled victim execution (i.e., replay). The replay mech-
anism is especially critical for side channels from physical traces
(e.g., power consumption) that not only vary instantaneously but
also necessitate successive modulation for observability. In this
paper, we identify and characterize the key limitations of exist-
ing replay techniques for speculation attacks. Our study unveils
that architectural support for transactional memory (i.e., Intel TSX)
can be leveraged as a highly efficient replay primitive for tran-
sient execution. Based on this observation, we design TMPlayer, an
efficient and high-resolution TSX-based replay framework for en-
clave victims. Built on top of TMPlayer, we present PowSpectre- a
novel replay-based transient execution attack using software-based
power side channels (via RAPL) that can exfiltrate secretive enclave
data accurately in the speculative domain. We evaluate PowSpectre
using case studies on several representative SGX binaries. Our eval-
uation shows that PowSpectre can exfiltrate unintended secrets in
enclaves with very high accuracy. We perform a gadget analysis in
SGX libraries and identify widely-existing code patterns that are
power differentiable for PowSpectre. Our work highlights the need
to synergistically understand the impact of speculation security
with the introduction of new hardware functionalities.

CCS CONCEPTS
• Security and privacy→ Trusted computing.

KEYWORDS
Power side channel, Trusted execution environment, Transaction
memory, Speculative execution, Replay attack

ACM Reference Format:
MdHafizul IslamChowdhuryy, Zhenkai Zhang, and Fan Yao. 2024.PowSpec-
tre: Powering Up Speculation Attacks with TSX-based Replay. In ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’24),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3661139

July 1–5, 2024, Singapore, Singapore. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3634737.3661139

1 INTRODUCTION
Hardware-based side channels have raised unprecedented security
concerns in computing systems. These attacks exfiltrate sensitive
information in software through monitoring hardware resource us-
age due to secret-dependent program executions [34, 35, 61, 66, 95].
Particularly, these side channels can be manifested by modulating
either: i) hardware-maintained states (i.e., persistent states) in nu-
merous processor microarchitectural components (e.g., caches [61,
66, 90, 95], branch predictors [8, 33, 34], and TLBs [37]) or ii) implicit
and ephemeral states including occupation on shared structures
(e.g., interference [9, 13, 74]) as well as physical properties (e.g.,
power and EM [8, 57, 97]) associated with hardware activities. The
development of transient execution attacks further empowers such
side channel threats [10, 16, 24, 25, 51, 58, 71].

As the threat of advanced attackers in malicious environments
continues to escalate, integrating hardware-based trusted execu-
tion environments (TEEs) has become imperative. Pioneered by
Intel’s Software Guard Extensions (SGX), TEEs take the proces-
sor as the foundation of trust, providing isolated execution for
applications running within enclaves [30]. This offers confidential-
ity and integrity protection for enclave data, even in the case of
compromised system software (i.e., malicious OS). However, nu-
merous studies have revealed that the security guarantees of SGX
are not always upheld, with the system being vulnerable to various
side channels [55, 58, 68, 71, 75, 78, 80–82]. SGX exacerbates infor-
mation leakage by allowing the presence of powerful, privileged
adversaries with system-level control capabilities (e.g., interrupt
handling). SGX attackers can utilize fine-grained execution control
to build highly accurate side channels through victim execution
within the enclave. This is particularly useful for stateless side chan-
nels (e.g., contention status and physical properties) due to their
susceptibility to inherent noise [13, 57, 75].

Equipped with the capability of privileged system-level control
by adversaries, prior studies have proposed replay mechanisms that
allow multiple (and potentially unbounded) re-executions of cer-
tain secret-operating instructions (or instruction sequences) while
stalling the forward progress of the victim [75, 79]. As side channels
can be sensitive to interference, these techniques are extremely use-
ful to denoise side channels against an enclave. So far, two classes
of replay techniques have been studied: i) exploiting frequent timer
interrupts to trap the enclave in the endless exit/resume loop (i.e.,
zero-stepping [79]); or ii) utilizing page faults to enforce repetitive
executions from certain fault-inducing instructions (e.g., Micro-
Scope [75]). While such mechanisms can successfully augment

https://doi.org/10.1145/3634737.3661139
https://doi.org/10.1145/3634737.3661139

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

classical microarchitectural attacks, the practicality of replaying
transient execution attacks is not well explored. Our investigation
reveals that existing approaches fall short of such a purpose. Specif-
ically, we observe the existence of a serialization effect of ERESUME
(i.e., the instruction to resume into the enclave) that zero-stepping
anchored on for re-execution. As a result, it only achieves execution
rewind and cannot transiently execute instructions after ERESUME1.
In contrast, we find that page fault-based replay involves complex
page walk operations, which can introduce non-deterministic per-
turbations to side channel measurements (e.g., power consumption),
thereby restricting the accuracy of secret inference.

Based on the above observations, we investigate novel instruc-
tion replay capabilities exploiting hardware transactional memory,
specifically using Intel TSX [40]. With the low-overhead hardware
tracking of memory accesses during transactions and the provision
of fast retry mechanisms through a userspace abort handler, TSX al-
lows instructions to be repeatedly executed in the event of an abort,
effectively functioning as an instruction replay primitive. Ironically,
prior studies have suggested using TSX to safeguard enclaves from
privileged exploitation, such as page fault-based attacks [21, 43],
positioning it as a potential countermeasure for replay-based side
channels [75]. Furthermore, when considering both effectiveness
and implementation cost, a TSX-based approach is potentially one
of the most promising defenses against cache attacks [21, 38]. How-
ever, our investigation reveals that TSX not only fails to defeat
replay attacks but can also be harnessed to strengthen transient
instruction replay, essentially transforming the tool into a weapon.
Unlike prior attacks that utilize TSX to manipulate/monitor cache
states [32, 82] and fundamentally rely on the cache being vulnerable,
we exploit the intended nature of TSX as a replay primitive.

In this work, we present PowSpectre- a novel TSX-based specu-
lative execution replay framework that exfiltrates enclave secrets
using power side channels via the Intel Running Average Power
Limit Interface (RAPL) [6]. To the best of our knowledge, PowSpec-
tre is the first attack that leverages instruction-based power leakage
to amplify power observation for speculation leakage, which can
manifest even with themost recent version of hardened RAPL [5, 57].
Importantly, with the exploitation of inter-instruction power differ-
entiability, the proposed attack manages to perform fine-grained bit
stealing using highly distinguishable power observations even un-
der Intel’s most recent microcode update with hardened RAPL [1, 3],
which can defeat state-of-the-art power-based leakage attacks [57].
To overcome the shortcomings of prior instruction replay mecha-
nisms, we design TMPlayer–a TSX-based mechanism that replays
instructions for transient execution with a high degree of precision.
We implement two variants of TMPlayer: 1) TMPlayer-E that utilizes
conflicts on the readset/writeset to trigger transaction aborts, and 2)
TMPlayer-I which exploits in-transaction interrupt for efficient TSX-
based replay. Notably, the new replay primitive can make practical
noise-prone power side channels, which cannot be easily annulled
via microarchitecture-level countermeasures [21, 38, 43, 65]. We in-
vestigate the efficacy of our proposed schemes on two generations
of Intel processors (i.e., Skylake and Coffee Lake). The evaluation
shows that TMPlayer can achieve 100% replay with extremely high

1In other words, zero-stepping only replays ERESUME, which is sufficient in prior
attacks [71, 78] as they target enclave registers loaded on chip by it.

resolution (i.e., up to 45K replays/second). Additionally, PowSpec-
tre is able to infer enclave secret bits in transient execution with
>95% accuracy under both TMPlayer variants. We perform two
case studies of the proposed attack against the Intel SGX SSL library.
Our results show that PowSpectre can exfiltrate cryptographic keys
with accuracy up to 94%. Finally, we identify power-differentiable
gadgets that can be leveraged by PowSpectre. Our findings reveal
widely existing exploitable code gadgets for PowSpectre in repre-
sentative SGX libraries (including SSL and LibC). In summary, the
main contributions of this paper are:

• We investigate state-of-the-art instruction replay mecha-
nisms and unveil their pitfalls as well as limitations for re-
playing speculation attacks. We then identify Intel TSX as
the new replay primitive for transient execution and design
TMPlayer, a high accuracy and low overhead replay attack
framework for enclave victims.

• Using TMPlayer, we design PowSpectre, a novel replay-based
power side channel that can accurately exfiltrate enclave se-
cretive data accessed in the speculative domain. Notably, we
show the first attack that can manifest under Intel’s most
recent microcode update mitigating prior RAPL-based infor-
mation leakage.

• We demonstrate real-world attack capabilities of PowSpectre
through i) leaking cryptographic key in RSA, and ii) stealing
private plaintext in envelope-mode encryption from Intel
SGX SSL library. PowSpectre achieves high bit-stealing ac-
curacy with a modest number of samples.

• We analyze power-differentiable PowSpectre gadgets in rep-
resentative SGX libraries and categorize the identified gad-
gets based on their bit-leaking accuracy. Our analysis shows
the existence of abundant gadgets exploitable for PowSpectre
to leak speculation data.

• We discuss potential mitigation strategies for PowSpectre.
Our work highlights the need to rethink the security impli-
cations as hardware functionalities are utilized in processors
for protection.

Responsible Disclosure. Following the practice of responsible
disclosure, we have shared our findings with the product security
team of Intel.

2 BACKGROUND
2.1 Hardware-based Side Channels
Microarchitectural security. Program execution leads to changes
of microarchitectural state changes. Such side effects, if depen-
dent on program secrets, introduce information leakage observ-
able through side channels (e.g., timing). Microarchitectural at-
tacks have been demonstrated on many hardware components
such as cache [32, 61, 91, 94, 95], branch predictor [24, 25, 34], fron-
tend buffer [69], execution port [13] and memory [22, 23, 54, 67].
To mitigate them, various microarchitecture-level protections are
presented that either isolate/limit the access to shared resources
(i.e., transmit) [2, 15, 26, 50, 60, 76] or disrupt the observation (i.e.,
receive) [8, 14, 62, 66] through such a side channel. These de-
fenses can be either always on, or can be selectively enabled on
demand through periodic contention monitoring [20, 44, 89, 92, 93].

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

To protect commercial-off-the-shelf machines, system-level tech-
niques such as constant-time programming that eliminate secret-
dependent data-/control-flow are proposed [18, 22, 23, 34, 36, 64],
which typically requires software rewrite by programmers.
Speculation attacks. Speculative execution [51, 58] transforms
microarchitecture side channels to more severe information leak-
age. Specifically, exploitation of transient instruction execution can
lead to unintended data access in the speculative domain, which
could then be leaked through a microarchitectural side channel [51,
58, 87]. Existing system-level defenses for speculation-based ex-
ploitations generally attempt to prevent the malicious trigger of
mis-speculation (e.g., branch poisoning) [45, 46] or stop specula-
tion altogether (e.g., for security-sensitive branches) [47, 77]. Note
that these techniques do not offer complete security as they either
introduce non-trivial overhead or can be potentially bypassed with
more advanced attack techniques [10].
Physical side channels. Processor hardware activities can in-
fluence physical states such as power, EM emission, and acous-
tic signals [42, 49, 52, 73]. Generally, this leads to side channel
exploits leaking coarse-grained secrets (e.g., website fingerprint-
ing) [41, 52, 72, 73, 96]. Recently, software interfaces exposing power
measurements have shown tomake power side channels exploitable
remotely [56, 57, 97]. Specifically, Intel and AMD systems provide
a software interface to monitor running average power limit (RAPL)
for different domains. Prior work reveals that it is possible to in-
fer instruction operand based on power observations via the RAPL
interface [57]. In response, the system community has released
countermeasures that block userspace access to the power mea-
surements. Additionally, Intel has released microcode patches [5]
to downgrade the power reporting to a model-based approach [3],
which claims to defeat state-of-the-art RAPL side channels.

2.2 Trusted Execution Environment
TEE provide data security for user-defined regions of application
called enclaves through hardware-enforced encryption and attes-
tation. SGX encrypts enclave data using on-chip hardware and
stores it in off-chip Enclave Page Cache (EPC), protecting it from
malicious OS/hypervisor and physical attacks. SGX provides a set
of instructions and SDK functions for enclave operations, includ-
ing i) EENTER/EEXIT to enter/exit an enclave; ii) ECALL/OCALL to
call trusted/untrusted functions from outside and inside the en-
clave; iii) ERESUME to restore the enclave after a context switch (e.g.,
kernel space switch to handle exceptions/interrupts). To protect
architectural registers holding enclave secrets at context switches,
the enclave performs an Asynchronous Enclave Exit (AEX) that
securely stores its contexts, including all architectural registers and
Enclave Instruction Pointer (ERIP), in an EPC region, called State
Save Area (SSA). During the enclave resumption (ERESUME), this
SSA is restored, and the enclave execution is resumed from ERIP.

2.3 Intel Transactional Memory Extension
Transactional memory is a high-performance alternative to explicit
locks (i.e., MUTEX) for concurrent accesses to shared memory in
parallel computing. It executes a group ofmemory operations as one
transaction, where all or none of the operations in a transaction are
completed, thereby maintaining global visibility of the operations.

Intel TSX is a hardware implementation of transactional memory
which tracks transactionally accessed cache lines (i.e., readset) or
modified cache lines (i.e., writeset) in hardware (i.e., extension of
cache coherence). If a violation of transactional property is detected,
TSX provides a userspace abort handler to retry the transaction or
use a fallbackmechanism. If no abort is detected during the course of
the transaction, all updates to the writeset are committed, marking
the completion of the transaction. Interestingly, by utilizing the
hardware tracking of readset/writeset in TSX, a line of defense is
introduced against SGX attacks [21, 38, 43, 65]. Specifically, such
defenses use TSX to i) ensure enclave data always stays in cache
during execution, hiding secret-dependent data-flow [38, 43]; and ii)
suppress page faults to prevent controlled-channel attacks [21, 43]
and replay [43, 75].

3 THREAT MODEL
Our threat model is consistent with recent attacks that exploit
vulnerabilities in Intel SGX and speculative execution techniques.
This threat model aligns with pre-existing works exploiting Intel
SGX [57, 75, 78, 79, 81, 83]. Despite ongoing efforts to mitigate
speculative execution attacks, these exploits remain feasible, as
demonstrated by recent research studies [10]. To safeguard data in
SGX environments, the victim process is running within a secure
enclave. We assume that TSX is available in the system. Note that,
although Intel disabled TSX due to TAA, it can be enabled at user
discretion through boot flags in supported platforms. Moreover, we
note that hardware transactional memory (TM) is a critical architec-
tural feature that offers high performance software parallelism. We
envision that such support will be provided in certain forms in the
future. It is important to understand the implication of transactional
memory for microarchitecture security, a problem that severely
concerns both academia and industry.

We further assume the attacker can obtain power measurements
of the processor on the victim machine. While current Linux-based
systems no longer offer userspace access to RAPL interfaces through
sysfs, power consumption can still be read by a privileged attacker.
Recent microcode updates from Intel can obfuscate power observa-
tions through RAPL to mitigate side channels through power [5].
This patch downgrades power reporting to a model-based approach
in systems when SGX is enabled. In this study, we will investigate
the practicality of power side channels where systems are equipped
with the original accurate vanilla RAPL interface as well as under
the hardened RAPL with the most recent microcode update.

4 UNDERSTANDING EXISTING REPLAY
MECHANISMS

Instruction replay is a technique with which the attacker obtains
precise control of victim execution and executes the same instruc-
tion or a sequence of instructions (i.e., target instructions) consecu-
tively without requiring the victim’s re-execution. This technique
typically coordinates externally generated system events (such as
interrupt or exception) with the victim execution so that target
instructions are executed, but the architectural state of the program
counter (PC) register is not incremented. Consequently, when the
victim execution is resumed after servicing the interrupt or ex-
ception, it will execute according to the program counter, thereby

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

Inside Enclave

Outside Enclave

EENTER

Exception/
Single-step

Config APIC

ERESUME
Fetch

ERESUME
Commit

Zero-Step Interrupt Window

…

…

Interrupt

Replay

AEX

IRQ
Handler

AEX

IRQ
Handler

Config APIC

…

…

Figure 1: Timeline for timer interrupt-based replay.

re-executing the target instruction. By repeating the same proce-
dure, attackers can achieve successive executions of selected victim
instructions without committing [57, 75, 79]. In this section, we sys-
tematically investigate the two state-of-the-art replay mechanisms
and demonstrate their limitations in achieving the speculative side
channel through power.

4.1 Timer Interrupt-based Replay
One possible way to realize replay is to exploit interrupts, as shown
in works such as zero-stepping [79]. When the processor receives
an interrupt, the CPU core typically completes the instruction at
the head of the reorder buffer (ROB), squashes other in-flight in-
structions, and transfers control flow to the interrupt handler. In
enclave execution, an AEX is performed before handling the in-
terrupt. After interrupt processing, the enclave resumes execution
by executing ERESUME. Previous works highlight two main zero-
stepping use cases: 1) trapping enclave execution at the end of
ERESUME to load enclave registers (secrets) in the SSA for later steal-
ing [71, 78, 81]; 2) repetitively executing ERESUME and one or more
subsequent instructions, aiming for side effects (e.g., power) leading
to a collective side channel [57]. For successful replay in either case,
it is crucial to ensure that for each round: ➊ ERESUME is executed,
and ➋ only ERESUME is committed. Figure 1 depicts the enclave
execution timeline and the interrupt arrival window required for
successful replay. Notably, the timer interrupt must arrive between
ERESUME being at the head of the ROB and its retirement. Due to
processor pipeline uncertainties, zero-stepping faces replay failures:
if the timer interrupt arrives too early, the processor may trap in an
interrupt handling loop without executing subsequent instructions,
including ERESUME; conversely, if the timer interrupt interval is too
large, the execution window may extend beyond ERESUME’s retire-
ment, leading to execution/commit of subsequent instructions, in
which case ERIP advances and zero-stepping fails.

To investigate the impact of timer-based interrupts on instruc-
tion replay, we design a microbenchmark (Figure 2a) using the
zero-stepping framework [79]. The target instruction is a movq in-
struction loading data from memory, scheduled to execute after
ERESUME. The APIC timer triggers just before the movq execution.
We adjust the interrupt handler to check if the memory block of
data is cached and flush it if so. Enclave execution begins with AEX,
followed by the interrupt handler routine. If the enclave executes
the movq, it will bring data to cache. We vary interrupt intervals
and execute the experiment with 100K timer interrupt triggers,
logging each execution round as a sample. Each sample records

Interrupt

Enclave

IRQ Handler
①

②

③

④

(a) Illustration of the microbenchmark under test.

15 16 17 18 19 20 21 22 23 24 25
Inter-Interrupt Time

0

50

100

Sa
m

pl
es

 (%
)

ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS ZS
N-

ZS

Cache hit Cache miss

(b) Execution statistics with zero-stepping.

Figure 2: Instruction replay capability with zero-stepping. In
Figure 2b, ZS and N-ZS represent samples with successful
and failed zero-stepping, respectively. The inter-interrupt
time is set in the unit of APIC timer interval.

whether ➊ the replay is successful (i.e., ERIP does not advance) and
➋ the load instruction (first instruction after ERESUME) is executed.

Figure 2b presents statistics on zero-stepping success and load
instruction execution, as the time between interrupt arrivals varies
from 15 to 25 APIC timer intervals2. We observe that cache misses
to data consistently occur in all successful zero-stepping samples.
Conversely, failed zero-stepping samples exhibit cache hits, indicat-
ing load instruction execution. These results are consistent across
two different CPUs (i.e., i7-6700K and i7-9700K). Our evaluation
reveals a previously unknown observation: Instructions after
ERESUME do not execute until it is retired. We hypothesize this
serialization is due to ERESUME restoring critical enclave registers,
necessitating completion for correct execution. This has critical
implications for replay capability. If the timer-interrupt is received
during ERESUME’s execution window (Figure 2b), upon the comple-
tion of ERESUME, all in-flight instructions are flushed before the
handling of the interrupt. Thus, successful zero-stepping cannot
advance instruction execution flow over ERESUME speculatively.
Zero-stepping solely serves as an execution rewind and cannot re-
play instructions. We note that Platypus [57]mentions zero-stepping
could be leveraged to replay instructions for power observations.
However, as expected based on our experimental findings, we are
not able to reproduce the replay similar to [57] using zero-stepping
with timer-interrupts.

4.2 Exception-based Replay using Page Faults
Prior works have demonstrated that a privileged attacker can de-
liberately set page faults to induce replay [75, 79]. For example, in
MicroScope [75], the attacker clears the present bit of the victim
data page, causing a page fault when a targeted instruction (𝐼𝑒)
in the enclave accesses it. Instructions following 𝐼𝑒 may execute
transiently in a manner similar to Meltdown [58]. Once 𝐼𝑒 is at the
2An APIC timer interval is the value by which the timer counter must change before
an APIC interrupt is generated.

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

…

…

…

…

Inside Enclave

Outside Enclave

EENTER

Replay

…
Ie

Fetch
I1 It Ie

Exception

…
Flush TLB

ERESUME

AEX

EXC.
Handler

Fetch
Commit

Flush TLB

AEX

EXC.
Handler

Figure 3: Timeline for page fault-based replay.

head of ROB, the page fault is detected, and all instructions in the
pipeline are discarded (including 𝐼𝑒). An AEX is then performed to
save the enclave context, and the processor execution transitions to
exception handling. The attacker can tamper with the page table to
clear the present bit again and flush the TLB. Upon restoration with
ERESUME, the same instruction will induce a page fault exception
again, leading to repeated execution of instructions following 𝐼𝑒 .

Figure 3 outlines the timeline for replay using page faults in the
enclave. Notably, the exception occurs precisely at the execution
of the enclave instruction (𝐼𝑒). Unlike the timer interrupt-based
mechanism, page fault-based replay allows processors to advance
over ERESUME as each round of ERESUME is permitted to commit.
Consequently, subsequent instructions, including 𝐼𝑡 , can advance.
While this mechanism enables speculative execution and replay
of a sequence of instructions, it has several limitations: ➊ Page
faults trigger TLB misses and page table walks, requiring multiple
memory loads, limiting replay resolution (replay frequency), and
introducing non-trivial and non-deterministic noise to an elastic
timing channel (e.g., power); ➋ Page faults frequently trigger the
page fault handler, potentially prompting partial page table walks
and leaving a system-level footprint that can be relatively easily
captured. Previous studies have shown the effectiveness of (i) non-
preemptable code segments (suppressing synchronous exceptions
like page faults) [43, 65] or (ii) enclave-maintained timers to detect
each AEX [21], both mitigating page fault-based instruction replay.

5 EXPLOITING TSX FOR INSTRUCTION
REPLAY

In this section, we explore the challenges of reusing transactional
memory implementations in modern processors (i.e., Intel TSX) as
instruction replay techniques. Prior instruction replay techniques
are either incapable of replaying (in the case of APIC timer inter-
rupt) or exhibit non-trivial overheads (Section 4). While TSX allows
for the re-execution of transactions in case of an abort, there are
several challenges that must be addressed to repurpose it as an in-
struction replay technique. These challenges include: i) how can the
attacker trigger TSX abort deterministically? ; and ii) how to achieve
zero failure by exceeding the replay window? In this section, we will
address the challenges and demonstrate how this feature can be
maliciously manipulated to construct highly efficient replay attack
methods for the purpose of extracting sensitive information.
Abort rules in Intel TSX. Intel TSX provides synchronization
across parallel threads via transactions instead of explicit locks. A
transaction represents a group of memory loads and stores, succeed-
ing only if all accesses remain valid. To ensure this, Intel defines

…Inside Enclave

Outside Enclave

EENTER

…
…

…

Transaction
start

…

Replay

I1 I2 It
Abort

Transaction
abort (retry)

Attacker thread (Access eviction set)…
(a) Eviction-based (TMPlayer-E).

…Inside Enclave

Outside Enclave

EENTER

…

…

…

Transaction
start

…

Replay

I1 I2 It
Interrupt

Transaction
abort (retry)

AEX

IRQ
Handler

(b) Interrupt-based (TMPlayer-I).

Figure 4: TMPlayer-based instruction replay.

several abort signals that may indicate a violation of transaction re-
quirements: ① explicit abort (XEND instruction), ② syscall or nested
transaction, ③ memory access violation/conflicts (e.g., read-after-
write or write-after-write), ④ exception (i.e., page fault), ⑤ OS inter-
rupt, and⑥ cache eviction of readset/writeset. If any of these signals
are detected during the execution of a transaction, the transaction
is aborted, and an execution flow is transferred to a user-space
abort handler, which typically retries the transaction.

In the event of a transaction abort, the transactional section
is re-executed, effectively making the transaction hardware itself
the replay agent. Signals ①, ②, and ③ are not attacker-generated,
while ④, ⑤, and ⑥ can be triggered by attacker. Attackers can
induce page faults for ④ (Section 4.2), configure an APIC timer
for ⑤ (Section 4.1), or perform cache eviction of readset/writeset
for ⑥. As inducing page faults can generate non-trivial overhead,
we focus on using interrupts and cache eviction as the primary
primitives for TSX-based replay. Consequently, we present two
variants of our replay techniques: (a) TMPlayer-E, which uses
cache eviction as the abort signal, and (b) TMPlayer-I, which
uses an APIC interrupt event as the abort signal. In the following
discussions, we demonstrate how the attacker can address all of the
aforementioned challenges in both TMPlayer variants. Note that the
availability of such transactions in the enclave can be widespread
in future systems. Many SGX defenses highlight the use of TSX as a
straightforward way of preventing cache and page fault-based side
channels in SGX [21, 38, 43, 65]. In the presence of these defenses,
the entire enclave code is wrapped inside multiple transactions,
creating the wide availability of transactions in the enclave.

5.1 TMPlayer-E- Cache Eviction-based Replay
Agent

Intel TSX ensures data validity during transactions via a hardware
tracking mechanism, marking cache lines as readset or writeset.
This involves expanding the L1 cache and last-level cache, with bits
indicating transaction access to each cache line. Specifically, the
TX-Read and Readset bits are set when a transaction sends a "get

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

message", and the TX-Dirty and Writeset bits are set when a trans-
action sends a "get exclusive" or "upgrade" message[39]. Tracked
cache line eviction triggers transaction abort. We exploit this be-
havior for an effective instruction replay technique. We call this
technique TMPlayer-E (Figure 4a). TMPlayer-E has three stages.
① The attacker first identifies an abort trigger by determining a
cache line accessed during a transaction. The attacker then gen-
erates an eviction set, which is a group of cache lines that evicts
other cache lines from a certain cache set when accessed in entirety.
In particular, we generate the eviction set where each address in
the eviction set belongs to the same L2 and LLC set following the
eviction set generation method for non-inclusive cache [90]. This
ensures that the attacker can perform cache directory-based eviction
of the abort trigger without occupying the same physical core as
the victim [90], and hence spatial or temporal core-sharing is not re-
quired. ② The attacker continuously accesses this eviction set from
a separate physical core to evict the trigger cache line. ③ Finally,
the victim enclave execution is triggered, eventually accessing the
trigger cache line, and bringing it into the transactional tracked
set. Thus, when the attacker evicts it due to accessing the eviction
set, an abort signal will be sent to the transaction within the victim
enclave, triggering subsequent re-execution of the transaction. By
doing so, the attacker can deterministically trigger the abort sig-
nal (i.e., as soon as the trigger cache line is evicted) and abort the
transaction without failure.

It is important to note that to avoid explicit synchronization
between the attacker’s eviction thread and the victim enclave exe-
cution, the chosen trigger cache line should be first accessed within
the transaction after executing the target instructions (i.e., 𝐼𝑡). This
ensures that the trigger cache line will only be a part of the trans-
action after the target instructions (𝐼𝑡) have been executed. The
overhead due to cache eviction is highly repetitive and stable, and
can be easily filtered out from any monitored signal using a pre-
determined offset. Unlike previous cache side-channel attacks that
use secret-dependent cache access as a secret leakage medium,
TMPlayer-E exploits cache eviction as an abort signal.

5.2 TMPlayer-I - APIC Timer Interrupt-based
Replay Agent

TMPlayer-I utilizes precisely configured APIC timer-based inter-
rupts to abort ongoing transactions. Intel TSX aborts a transaction
upon receiving an interrupt, forming the foundation of this tech-
nique. The key property of interrupts is that they are handled on
instruction boundaries, meaning that the interrupt arrives after the
retirement of the instruction that is currently at the head of the
reorder buffer [80]. As a transaction comprises a set of instructions
rather than a single one if the interrupt arrives after executing the
target instruction (𝐼𝑡) but before the transaction’s completion, the
transaction aborts and re-executes (Figure 4b). The key difference
between TMPlayer-I and other interrupt-based replay techniques is
that TMPlayer-I uses an interrupt to abort a transaction. The timing
intervals between the APIC interrupts are crucial, as they must be
long enough to reach the targeted instruction (𝐼𝑡) but shorter than
the overall execution time of the transaction. If this timing can be
maintained, the transaction is guaranteed to abort without failure.

20 25 30
Power (W)

0.00

0.25

0.50

0.75

1.00

CD
F

add
cmp

(a) `Code 0xB8

20 25 30
Power (W)

0.00

0.25

0.50

0.75

1.00

CD
F

add
cmp

(b) `Code 0xF0

Figure 5: Cumulative distribution function (CDF) of power
consumption for two different execution paths.

Fortunately, the execution time of a transaction is usually determin-
istic if all required cache lines are in the cache, which is typically
the case after a few initial iterations of transactions. Therefore, the
attacker first determines an optimal interrupt timing interval by
executing the same instructions in the transaction from their own
enclave and then configures the APIC interrupt to arrive after that
interval for the duration of the attack. The overhead caused by
the interrupt handling can be made negligible by configuring the
periodic APIC interrupt only once [79].

6 POWER SIDE CHANNEL IN SPECULATIVE
EXECUTION

In this section, we present PowSpectre, a speculative information
leakage attack that uses power side channels in SGX.
Power differentiability for instruction execution. Prior stud-
ies have shown that it is possible to distinguish instructions and
operands using power side channels through RAPL. Intel has since
released a microcode update [1, 3] that addresses these issues by
downgrading RAPL measurements to model-based reporting in
systems with SGX enabled. While it is assumed that this mitigation
is sufficient to prevent previously demonstrated leakage through
RAPL measurements [57], our investigation revealed that such a
mechanism is not secure enough to prevent instruction differentia-
bility. We collected 10,000 RAPL measurements (each measurement
taken for the execution of 50,000 instructions inside an enclave) for
running either add instruction or cmp instruction with the same
operands. If everything else remains the same, these two instruc-
tions should have similar power signatures in a properly mitigated
system. We ran this experiment on an Intel 9700K system (addi-
tional experiment setup can be found in Section 7). The results
in Figure 5 show that even with model-based power reporting, an
adversary can still observe different power signatures (shown as the
CDF curves) for different instructions. This finding demonstrates
that the hardened RAPL interface still allows attackers to infer the
internal activities of the processor by distinguishing executions of
different types of instructions or instruction sequences.
Power differentiability in the speculative domain. Power side
channels are inherently coarse-grained, sensitive to system-level
noise from various hardware activities. Speculative execution wors-
ens these issues with additional branch predictor poisoning and
mis-speculation overhead. To understand their impact, we con-
duct an experiment by repetitively executing an instruction with

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

23 24 25 26 27 28 29 30
Power (W)

0

20

40
De

ns
ity

imul
clflush
add

sub
mov
cmp

vpaddd
vpxor
vmaxpd

(a) Baseline: no mis-speculation or enclave execution

23.5 24.0 24.5 25.0 25.5
Power (W)

0

20

40

De
ns

ity

imul
clflush
add

sub
mov
cmp

vpaddd
vpxor
vmaxpd

(b) In-speculate: with mis-speculation

23 24 25 26 27
Power (W)

0

20

40

De
ns

ity

imul
clflush
add

sub
mov
cmp

vpaddd
vpxor
vmaxpd

(c) In-enclave: with mis-speculation inside enclave

Figure 6: Power signature of representative instructions in
different execution environments (`Code 0𝑥𝐹0).

three configurations: i) non-speculative non-enclave (referred to as
baseline), ii) speculative non-enclave with userspace branch target
poisoning (i.e., in-speculate), and iii) speculative in-enclave with
kernel space branch poisoning after every execution of the target
branch (i.e., in-enclave). Figure 6 illustrates power profiles (PKG
domain) for representative instructions. We observe distinct and
non-overlapping power signatures are observed for these instruc-
tions in the baseline settings (Figure 6a). Crucially, despite branch
mistraining overheads, the majority of instructions exhibit distinc-
tive power profiles under in-speculate (Figure 6b) and in-enclave
settings (Figure 6c). Power differentiability across instructions per-
sists when appropriate instructions are selected. We quantify dis-
tinguishability by calculating the accuracy of instruction detection
using correlation analysis between power observations from a slid-
ing window of 100 samples against a profiled dataset (10K samples
for each instruction). Table 1 shows an average accuracy of around
∼90% for instruction determination in the in-enclave environment.

6.1 Overview of PowSpectre Framework
In this section, we present the PowSpectre framework. The key
insight behind PowSpectre is that the enclave’s secret value in the
speculative domain can be made to determine transient instruc-
tion executions that are power distinguishable. Unlike classical
side channel attacks, one major challenge for the realization of
PowSpectre is the need for a precise and lightweight instruction
replay mechanism. This is because a single execution of a short
instruction sequence is unnoticeable on power measurement. Addi-
tionally, since the code gadget with power differentiable paths is

Config. imul clflush add sub mov cmp vpaddd vpxor vorpd Avg.

baseline 98% 99% 96% 95% 97% 99% 95% 89% 92% 95.6%
in-spec 93% 97% 86% 85% 87% 89% 95% 96% 96% 91.6%
in-encl 94% 93% 79% 85% 89% 80% 91% 95% 91% 89.1%

Table 1: Instruction detection accuracy for each sample.

Transaction

Abort handler
Transmitter

Gadget

XBEGIN

XEND

. Transient execution …

Abort signal

Branch
poisoning

①

②

③ ④

Victim Enclave Kernel/Attacker

IRQ Handler⑤
Gt

Gc

Figure 7: Overview of PowSpectre framework.

unlikely to reside within the TSX transaction code block, PowSpec-
tre has to manipulate speculation to execute the leaky gadget in
the transient path.

The high-level attack procedure is illustrated in Figure 7. As
depicted, a power differentiable gadget is situated outside the scope
of the TSX transaction. However, through the use of branch poison-
ing, the attacker redirects the control flow and executes this gadget
in the transient execution path (①). After the gadget is executed,
the transaction resumes, and if an abort signal is received (②), the
transaction is terminated, and the abort handler is executed (③).
The transaction is then re-executed from the abort handler (④).
The branch poisoning is performed by the userspace IRQ handler
routine, which is triggered either by an abort signal in TMPlayer-I
(⑤) or via another APIC interrupt in TMPlayer-E. This poison-
ing is performed from the same physical core as victim execution.
This process is repeated to collect the necessary amount of RAPL
samples. Now we discuss the key attack steps in detail.
Step 1: Identify exploitable gadget and obtain RAPL traces
for profiling. In this step, the attacker selects two gadgets: i) a con-
trol gadget (𝐺𝑐) that is located within the victim’s regular program
execution path inside the transaction; and ii) a transmitter gadget
(𝐺𝑡) that contains two transient instruction execution sequences
conditioned on a speculative secret (denoted as 𝑒𝑙 and 𝑒𝑟 , correspond-
ing to ❶ and ❷). Eligible𝐺𝑐 gadget should include an indirect jump
that, when poisoned, can transfer the speculative control flow to
𝐺𝑡 . 𝐺𝑡 can be any code gadget in the enclave memory with power
differentiability for two different paths. After identifying the (𝐺𝑐 ,
𝐺𝑡) pair in the victim process, the attacker can generate power
profiles by executing the two instruction paths in the enclave. With
each RAPL measurement, we compute a power sample (𝑠) based
on the energy consumption within the past interval. We collect
a trace (𝑇) as a vector of 𝑛 consecutive power samples when cer-
tain path is repetitively replayed. 𝑇 𝑙 and 𝑇 𝑟 represents a trace for
𝑒𝑙 and 𝑒𝑟 , respectively. In this step, the attacker records multiple
traces corresponding to each execution path and records them to
generate individual power profiles (i.e., 𝑃𝑙 = {𝑇 𝑙

0 ,𝑇
𝑙
1 , ...,𝑇

𝑙
𝑖
} for 𝑒𝑙

and 𝑃𝑟 = {𝑇 𝑟
0 ,𝑇

𝑟
1 , ...,𝑇

𝑟
𝑖
} for 𝑒𝑟).

Step 2: Set up instruction replay and branch poisoning. In this
step, the attacker sets up replay primitives for𝐺𝑐 and𝐺𝑡 . Specifi-
cally, a) for TMPlayer-E, the attacker selects a trigger cache line that

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

is first accessed within the transaction after the indirect jump and
prepares an eviction set. This ensures that the trigger cache line
will be accessed after 𝐺𝑡 has been executed in the transient path.
Interestingly, we found that TSX treats any data block accessed dur-
ing the transaction as part of the transaction, regardless of whether
it is under a transient path. As a result, it is possible to use specula-
tively accessed memory blocks as the trigger cache line. However,
PowSpectre does not utilize such cache lines as speculation triggers.
This is because if misspeculation is not successful (due to imper-
fect branch poisoning), evicting of that outside cache line will not
signal a transaction abort. Hence, the memory transaction will be
committed, leading to replay failure; b) for TMPlayer-I, the attacker
executes 𝐺𝑐 and 𝐺𝑡 from its own enclave while recording the ex-
ecution time to determine the minimum execution latency of the
transaction. The attacker then chooses a timer interval smaller than
this latency value, ensuring that the APIC interrupt arrives within
the transaction. The attacker then configures the APIC interrupt
in periodic mode and selects the proper interval for the interrupt.
In addition to configuring the replay primitives, the attacker also
performs indirect branch poisoning to transfer control flow from𝐺𝑐

to the trigger gadget. In TMPlayer-I, the branch poisoning is done
within the interrupt handler routine. In TMPlayer-E, an additional
timer interrupt is configured (similar to TMPlayer-I).
Step 3: Trigger victim enclave execution and obtain power
traces. Once all the previously mentioned attack primitives are
completed, the attacker triggers the victim enclave execution and
records RAPL measurements. In TMPlayer-E, the attacker at the
same time executes a process that continuously accesses the evic-
tion set. This process is continued until a sufficiently long power
trace corresponding to the victim’s secret-dependent path execu-
tion is obtained (𝑇𝑥). It is important to note that this is the only
online phase of the attack.
Step 4: Correlation analysis with traces from Step 1. With 𝑇𝑥
and a power profile (𝑃) for an execution path in 𝐺𝑡 , the attacker
derives correlation-basedmeasure (𝑀) between𝑇𝑥 and 𝑃 by comput-
ing 𝐴𝑉𝐺(R(𝑇𝑥 , 𝑃𝑖)), where R is the Pearson correlation coefficient.
Essentially, the attacker runs correlation analysis between 𝑇𝑥 and
each power trace in 𝑃 , and generates the average correlation coeffi-
cient. Eventually, the attacker obtains two correlations𝑀 , one with
𝑃𝑙 and one with 𝑃𝑟 . The𝑀 between𝑇𝑥 and the power profile of𝑇𝑥 ’s
corresponding execution path (i.e., victim’s execution) is expected
to be higher due to power profile similarity. In this way, the attacker
can identify which speculative path (𝑒𝑙 or 𝑒𝑟) was executed and
hence successfully infer the speculative secret.

7 EVALUATION
Weevaluate the effectiveness of the proposed TMPlayer and PowSpec-
tre on Intel Core i7 9700K system running Ubuntu 20.04 and Linux
kernel 5.8.0-59 with SGX SDK version 2.11. Note that collecting
RAPL measurements for PowSpectre through rdmsr interface re-
quires a privileged attacker. In addition, SGX model enables privi-
leged side channel amplification techniques for further noise reduc-
tion [63, 86]. In particular, we utilize branch poisoning from kernel
IRQ handler at a specific point of victim program execution, which
requires SGX-based privileged attacker model. All experiments
are carried out under two system configurations: i) without RAPL

1 .START:
2 cmp $0, secret;
3 je .ZERO; // If secret == 0, goto .ZERO
4 .ONE: ❶
5 add %R12 , %R13; // else if secret == 1
6 ret;
7 .ZERO: ❷
8 cmp %R12 , %R13;
9 ret;

Listing 1: A PowSpectre transmitter gadget leaking secret.

secret == 0 secret == 1

24 26
0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

25
Power (W)

(b) APIC Interrupt

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

24 2625
Power (W)

(c) Page Fault

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

24 2625
Power (W)

(d) TMPlayer-E

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

24 2625
Power (W)

(e) TMPlayer-I

Figure 8: Cumulative distribution function (CDF) of power
consumption of two different execution paths corresponding
to the value of secret. Non-overlapping CDF represents high
accuracy of the control-flow detection.

mitigation (i.e., microcode-20190918/0𝑥𝐵8) and ii) with mitigation
(i.e., `Code version microcode-20220510/0𝑥𝐹0), which incorporates
Intel’s platform update to defend against attacks exploiting RAPL
energy reporting (i.e., IPU 2021.2) [3, 4, 6]. Finally, power measure-
ments are taken from RAPL PKG (package) domain.

7.1 Evaluation of TMPlayer
Instruction replay accuracy.We perform experiments to char-
acterize the accuracy and effectiveness of TMPlayer compared to
other replay mechanisms. This evaluation is performed in a non-
speculative path (i.e., without the need to trigger speculation with
𝐺𝑐). We leverage a microbenchmark (pseudo-code shown in List-
ing 1) as 𝐺𝑡 . For each instruction replay mechanism, we collect
one million RAPL measurements by executing the 𝐺𝑡 with both
values of secret (i.e., both 0 and 1). The results (Figure 8) show the
distribution of power consumption corresponding to each value
of secret. We observe that with APIC interrupt-based instruction
replay, the microbenchmark exhibits almost no power differentia-
bility. This aligns with the findings that speculative instructions are
not executed after ERESUME in zero-stepping. In contrast, the power
profile under page fault-based instruction replay demonstrates dif-
ferentiability to some extent. Specifically, this replay mechanism
can detect speculatively executed instructions with 63% accuracy.
We believe that page table walk introduces irregular noise patterns
in the power consumption, which reduces the differentiability. No-
tably, both variants of TMPlayer show very high replay accuracy
(i.e., 97% and 95% with TMPlayer-E and TMPlayer-I, respectively)
with the help of precise and low-overhead abort trigger.

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

140 160 180 200
Interrupt Interval (Cycles)

0

20

40

60

80

100

Ac
cu

ra
cy

 o
f A

bo
rt

Tr
ig

ge
rin

g
(%

)

0

20

40

60

80

100

Ac
cu

ra
cy

 o
f R

ep
la

y
(%

)

(a) TMPlayer-I

30000 40000 50000 60000
of TSX Execution Per Second

0

20

40

60

80

100

Ac
cu

ra
cy

 o
f A

bo
rt

Tr
ig

ge
rin

g
(%

)

readset
writeset

(b) TMPlayer-E

Figure 9: Accuracy of TSX abort triggering using TMPlayer.

1 while (true) {
2 execution_counter ++; // Count transaction
3 if ((status = _xbegin ()) == _XBEGIN_STARTED) {
4 // Note: use either writeset or readset
5 // writeblk ->writeset OR readblk -> readset
6 (* writeblk)++; OR tmp &= *readblk;
7 for (size_t i = 0; i < count; i++) { }
8 _xend ();
9 } else {

10 if (status !!= 0) abort_counter ++; // aborts
11 }
12 }

Listing 2: Code sequence to evaluate temporal resolution of
TMPlayer-E.

Temporal resolution of TMPlayer. Next, we evaluate the maxi-
mum replay frequency using TMPlayer:
TMPlayer-I : To investigate the temporal effects of the timer interval
in TMPlayer-I, we conducted the same experiment as before by
configuring the APIC interrupt to arrive at different intervals. As
discussed earlier, the TMPlayer-I interrupt needs to occur before
the transaction commits and after the execution of the target gad-
get (𝐺𝑡). From Figure 9a, we observe that in our selected gadget,
PowSpectre achieves a 100% abort success rate with a relatively
high (88%) instruction replay when using a fixed interval of 162
cycles for the APIC timer. This indicates that during execution, the
transaction is always aborted, ensuring the complete success of
replay. In addition, in the vast majority of executions, the target
instruction is executed, potentially leading to distinguishable power
observations through RAPL. Note that the selected timer interval
heavily depends on the specific transaction or gadget being ana-
lyzed. Therefore, a one-time profiling of the transaction’s runtime
is necessary to determine a suitable interval.
TMPlayer-E: To determine the detection rate of abort signals in
TMPlayer-E, we continuously execute the TSX code block in List-
ing 2 inside the enclave, utilizing either writeblk (or readblk) in
Line 6. Another thread executes continuously on a different phys-
ical core, flushing writeblk (or readblk) accordingly. We record
the number of times the TSX block is executed and the number of
times the transaction is aborted. It is important to note that the
replay frequency can be adjusted by altering the value of count.
Figure 9b demonstrates that both readset and writeset eviction-
based aborts can achieve 100% accuracy in triggering TSX aborts,
with a transaction rate exceeding 46,000 transactions per second.

(a) Source Code (b) Instruction Sequence

secret = 0 or 1;
if (array[idx])
// idx overshoots to secret in

↩→ speculative domain
❶ x = x + 1;
else
❷ x = x × 1;

// if (array[idx])
cmp [rax - 4], $0
je .L2

❶ add [rax - 8], 1
...

.L2:
❷ imul [rax - 8], 1

Listing 3: Pseudo-code for a potential transmitter gadget.

101 102 103 104 105 106

Number of Samples

40

50

60

70

80

90

100

Bi
t S

te
al

in
g

Ac
cu

ra
cy

 (%
)

TMPlayer-based
Pagefault-based

(a) `Code 0xB8

101 102 103 104 105 106

Number of Samples

40

50

60

70

80

90

100

Bi
t S

te
al

in
g

Ac
cu

ra
cy

 (%
)

TMPlayer-based
Pagefault-based

(b) `Code 0xF0

Figure 10: Bit stealing accuracy with various samples (results
showing for TMPlayer-E).

This indicates the highly accurate instruction replay capability of
TMPlayer-E, even at a very high frequency of execution. Addition-
ally, this is very close to the maximum possible abort frequency of
49,000, which is achieved using the explicit XABORT instruction.

7.2 Evaluation of PowSpectre
Accuracy of bit leakage. In order to evaluate the accuracy of
PowSpectre in terms of bit leakage, we perform a covert channel
experiment (Listing 3). We utilize a simple control gadget (𝐺𝑐) con-
taining one indirect jump instruction and a transmitter gadget (𝐺𝑡)
used to leak specific bits of a given register. The process begins
with the spy executing𝐺𝑐 and 𝐺𝑡 in its enclave and collecting pro-
file traces 𝑃𝑙 and 𝑃𝑟 . Subsequently, the spy triggers the execution
of the trojan and records RAPL samples. For each bit, we collect
10,000 samples (𝑇𝑥) using both variants of TMPlayer, as well as
the page fault-based instruction replay. We then perform Pearson’s
correlation analysis [11] on sliding windows of 100 samples with
the profile data (𝑃𝑙 and 𝑃𝑟). We observe that PowSpectre with TM-
Player achieves very high accuracy in classifying the enclave’s
transiently executed instructions, with a bit stealing accuracy of
96% in TMPlayer-E and 95% in TMPlayer-I when leaking 100 bits. In
contrast, the page fault-based technique demonstrates significantly
lower detection accuracy, achieving only 66%.
Sensitivity to sample size. To understand how sample size af-
fects PowSpectre’s accuracy in bit stealing, we collect 1M RAPL
samples for each bit using both TMPlayer variants and page fault-
based instruction replay. Results (Figure 10a) show TMPlayer can
maintain high accuracy (<90%) with as few as 1,000 samples, con-
trasting with the page fault-based method, which only achieves

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

1 void func() {
2 __asm volatile("call %
3 "r" (* target) :); // Indirect jump to [target]
4 }
5 *target = &benign_func; // Set target to benign
6 if (_xbegin() == _XBEGIN_STARTED) {
7 func(); // Indirect call to benign function
8 _xend();
9 } else retry(); // Retry on abort

Listing 4: Example TMPlayer gadget.

the highest accuracy of 62% with 1M samples per bit. This high-
lights TMPlayer’s efficiency and lightweight nature. Furthermore,
repeating the experiment under the latest Intel microcode update
(Figure 10b) reveals that while the new microcode may impact at-
tack accuracy, PowSpectre with TMPlayer remains highly effective,
achieving 82% accuracy with 1,000 samples and 87% accuracy with
10,000 samples.

7.3 Case Studies with PowSpectre
In this section, we present two case studies of leaking cryptographic
secrets from the latest version of Intel SGX SSL [29] based on
OpenSSL (v1.1.0o) using PowSpectre.

Figure 11: Gadget in elliptic
curve key management leak-
ing info. from [RDI].

Figure 12: Gadget in abstract
syntax encoding of keys
leaking info. from [RDX].

7.3.1 Stealing Cryptographic Secrets in Speculation. In the first case
study, we demonstrate an attack on an enclave utilizing Intel SGX
SSL to create an asymmetric key pair for the Diffie-hellman key
exchange using secp384r1 Elliptic Curve groups. The algorithm
employs 384-bit prime factorization to produce the private-public
key, which is then used for subsequent cryptographic operations.
Listing 4 shows a representative enclave code that can act as𝐺𝑐 . In
practice, any TSX block inside the enclave with an indirect jump or
call instruction can serve as 𝐺𝑐 . To carry out the attack, we utilize
a gadget (𝐺𝑡) from the OpenSSL Elliptic Curve implementation
to leak the LSB of the 8𝑡ℎ byte from [RDI] via instruction test
[rdi+0x8], 0x1 (Figure 11). The target for the attack is the call
to the i2d_PrivateKey function (i2d_PrivateKey(EVP_PKEY *a,
unsigned char **pp)), which converts the generated key from
OpenSSL internal format to a common digital encoding format. This
prepares the RSI register with the address of the private key. We
assume the victim enclave uses the gadget in Listing 4 that executes
an indirect jump to i2d_PrivateKey function (i.e., in place of Line
2) to perform the private key conversion. In our gadget analysis, we
have not found any appropriate gadget capable of directly leaking

Attack TMPlayer-Type 0xB8 0xF0

Case study 1 TMPlayer-E 93.2% 81.4%
TMPlayer-I 92.7% 82.4%

Case study 2 TMPlayer-E 92.7% 83.6%
TMPlayer-I 94.3% 82.4%

Table 2: Attack accuracy under different microcodes (i.e.,
0xB8 = insecure RAPL, 0xF0 = secure model-based RAPL).

bits from RSI. As a result, we use a different gadget to copy RSI to
another callee-saved register (78e: mov rdi,rsi). Alternatively,
register preparation can also be done using gadget chaining (i.e.,
chaining indirect jumps) [12, 31], which first prepares the appro-
priate register (e.g., RDI) with the memory location holding the
decoded key. Once the register preparation is done,𝐺𝑡 is chained to
execute speculatively, leaking the bit from enclave memory. Table 2
shows the results of using both TMPlayer variants. The bit leakage
accuracy is computed by checking bits correctly recovered over the
total bits (average of 1000 runs). We observe upto 93.2% accuracy
in systems without recent RAPL mitigation. In systems with the
latest mitigation, the accuracy is still upto 82.4%.

7.3.2 Exfiltrating Plaintext Input from OpenSSL. In the second
case study, we demonstrate the ability to exfiltrate plaintext from
OpenSSL envelope mode encryption. Specifically, we target a sce-
nario where the victim enclave uses the envelop mode encryption
(EVP) of OpenSSL to encrypt session keys using slower asymmetric
keys. As the session key is used as the plaintext for encryption, it
is considered a secret. The target enclave performs encryption of
the given plaintext, in this case, the session key, using the EVP_En-
cryptDecryptUpdate interface of OpenSSL. This function includes
a virtual function call (i.e., ctx->cipher->do_cipher(ctx, out,
in, inl)) that takes the plaintext as the third argument, passed
as a pointer through the RDX register. Similar to the previous at-
tack (Section 7.3.1), we assume the victim enclave has a TSX block
similar to Listing 4 which contains the virtual function call (ctx-
>cipher->do_cipher in place of Line 2). To leak the plaintext bits,
the attacker first poisons the indirect jump inside the TSX block
to execute the encryption interface. Then within that, the attacker
further poisons the do_cipher call to execute the gadget (𝐺𝑡) used
for leaking the plaintext. In this attack, we use a transmitter gadget
from the abstract syntax encoding of keys in OpenSSL (Figure 12).
The results of this attack, as shown in Table 2, demonstrate high
accuracy in bit recovery using either variant of TMPlayer. The re-
sults indicate that this type of attack is successful in exfiltrating
sensitive information from enclaves using OpenSSL encryption.
Similar to the previous attack, we achieve upto 94.3% and 83.6%
accuracy using old and new microcode, respectively.

7.3.3 PowSpectre Gadget Analysis. To determine the number of
bits per byte that can be leaked, we build a static analysis tool to
identify and analyze𝐺𝑡 from Intel SGX SSL [29] and LIBC binaries.
We conservatively assume the speculative instruction window to
be 30 instructions [10] following the initial indirect jump. Note
that while the actual speculation window can be larger, this thresh-
old is set to search for efficient gadgets with fewer non-leaking
instructions (i.e., instructions that are executed regardless of the

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

RAX RBX RCX RDX RDI RSI RSP RBP Total

TEST 3371 0 2 179 0 24 19 14 3609
CMP 1672 8 3 168 374 1 2 398 2626
SHR+ 3122 100 409 459 5 20 0 70 4185TEST/CMP

Mask 0xD3 0xD5 0x91 0xDD 0xE1 0x91 0xD1 0x8B 0xFF

Table 3: Availability of potential PowSpectre transmitter gad-
get in Intel SGX SSL [29] and LIBC libraries.Mask showing
leakable bits positions in a byte using the register.

55 60 65 70 75 80 85 90 95 100
Usability of Gadgets (Accuracy %)

0

25

50

75

100

Ac
cu

m
ul

at
ed

 G
ad

ge
t

 A
va

ila
bi

lit
y

(%
)

μCode = 0xB8
μCode = 0xF0

Figure 13: Tradeoff between gadget availability and usability.

secret value). Our study here focuses on gadgets with TEST and CMP
instructions. Moreover, we only consider gadgets that are capable
of leaking precisely a single bit rather than merely telling a register
value equals a constant. Table 3 summarizes our findings. In partic-
ular, we find that using TEST->Jump or CMP->Jump gadget, we can
leak all 8 bits of the first byte of a register (Mask represents the
leakable bit vector). In addition, to leak bits from other bytes, we
use SHR gadget on register holding data in speculative domain (SHR
performs logical right-shift operation). This is chained [10, 12, 31]
with 𝐺𝑡 to enable bit stealing for a different byte through the use
of the same sets of gadgets. Furthermore, we randomly choose 500
𝐺𝑡 gadgets and calculate their bit leakage accuracy as a heuristic
analysis. Figure 13 shows that a significant number of the gadgets
(73% in old microcode and 52% newer microcode) are capable of
achieving at least 80% bit leakage accuracy. More notably, 39% and
12% of gadgets respectively can achieve bit leakage accuracy of over
90%. While the gadget analysis is not intended to be exhaustive, our
results show abundant exploitable gadgets that can exfiltrate secret
bits in registers at arbitrary offsets. Finally, for gadgets with high
differentiability, we additionally perform experiments to determine
their sensitivity to speculation depth in gadget chaining (i.e., the
number of indirect control flow transfers under the transient exe-
cution path). As illustrated in Figure 14, a speculation depth of one
marginally changes the instruction differentiability. Additionally,
speculation depth of 2 and 3 still show significant differentiability,
making them suitable for statistical analysis. Finally, speculation
depths 4 and 5 have high noise, considerably reducing accuracy.
We conjecture that the overhead of mistraining up to such depth is
the major cause of this degradation. Regardless, this result shows
PowSpectre is highly effective even in the case where certain gadget
chaining is needed for the attack.

0 1 2 3 4 5
Speculation Depth

60

80

100

Ac
cu

ra
cy

 (%
)

μCode = 0xB8
μCode = 0xF0

Figure 14: Sensitivity of gadgets with respect to speculation
depth (0 represents non-speculative).

8 DISCUSSIONS
8.1 Mitigation
Existing system-level mitigation. Several system-level defenses
are available to limit speculative control flow hijacking. For in-
stance, IBPB (Indirect Branch Prediction Barrier)[45] and STIBP
(Single Thread Indirect Branch Predictors)[47] prevent BTB poi-
soning across processes and within the same thread, respectively.
IBRS (Indirect Branch Restricted Speculation)[46] and enhanced
IBRS (eIBRS) are designed to prevent poisoning across privilege
modes. However, recent research has shown that these defenses can
be bypassed, and poisoning can still be effective even with these
mitigations in place[10]. To mitigate RAPL-based side channel at-
tacks [57], Intel introduced a microcode update that switches RAPL
power reporting to a model-based approach [5]. Specifically, Intel
introduced a RAPL filtering method that introduces small, random
energy noise and reduces the update frequency. It is important to
note that these measures exclusively affect RAPL measurements
conducted through the rdmsr interface. Hardware power manage-
ment within Intel’s SoC continues to operate with unfiltered RAPL
values, ensuring that critical hardware features (e.g., Turbo Boost)
remain unaffected by this mitigation. However, as demonstrated by
this work, Intel’s mitigation does not prevent RAPL measurement
variance introduced by different instruction executions.
Potential future mitigation for PowSpectre. One potential mit-
igation is to inject noise into the software measurement interface.
With every update to the corresponding MSR, a random bias can
be added to the actual energy samples. This may potentially re-
sult in irregular noise in the measurement, which can degrade the
attack accuracy. However, this method may also result in an overes-
timation of running power and thermal utilization, as any process
observing the interface to maintain device features (such as thermal
management systems, turbo boost management) will also observe
the overshoot of added noise. An alternative approach would be to
execute additional random instructions along with the original sets
of instructions, which will have a similar random bias effect on the
actual power consumption. Since Intel is already using model-based
power reporting, a promising approach specifically for PowSpec-
tre is to exclude squashed instructions from the power reporting
logic, eliminating differentiable power observation due to transient
execution. Finally, this can be combined with hardware support to
limit the number of retries for memory transactions with TSX.
Restricting software interface for powermeasurement. RAPL-
based power side channels can be entirely mitigated by disabling

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

the software interface, although this is an extreme measure that can
impair system functionality and performance. Many critical func-
tions rely on power management and monitoring, and disabling
the interface could render these features incompatible. An alter-
native approach involves restricting access to the RAPL interface,
allowing only trusted parties to access it. This can be achieved by
encrypting the MSR content related to power measurements, with
only trusted services possessing the decryption key. When a service
requests access to power information, it must authenticate itself as
a trusted party, such as a trusted enclave, to obtain raw power data.
Essentially, TEE can be augmented to include power measurement
services, where the TEE manages decryption keys and verifies the
identity and integrity of requesting applications or services. It is
worth noting that implementing such a mechanism requires ex-
tending the trusted computing base of the TEE to include services
that necessitate RAPL measurements.

9 RELATEDWORKS
Since the advent of speculation execution attacks [51, 58], side chan-
nels have become an extremely worrisome attack vector [19, 24,
27, 71, 78, 81, 82]. Many defense works are introduced to mitigate
transient secret leakage through microarchitectural components
(e.g., cache [17, 70, 87, 88] while keeping the performance benefits
of speculative execution. In contrast, power side channels have
been previously studied as a means of extracting sensitive infor-
mation in non-speculative domains [42, 52, 57, 97]. In this study, we
demonstrate the feasibility of using a power side channel to recover
fine-grained speculative secrets, which significantly extends the at-
tack surface. Given the widespread threat of speculative execution
attacks, this new attack adds an even harder-to-mitigate transmit-
ting medium for these types of attacks. In addition to information
leakage through direct power measurements, recent works have in-
vestigated the indirect impacts of dynamic power consumption in
other channels [27, 59, 84, 85]. Among them, HammerScope [27]
demonstrates a way to correlate the rowhammer bit-flip observa-
tions with memory power consumption, which can be used for
leakage in the speculative domain. Hertzbleed [84, 85] and Fre-
quency throttling [59] utilize dynamic frequency scaling of modern
processors due to imposed power limits to determine dynamic
power consumption through operating frequency. However, these
works have not investigated speculation replay techniques to enable
secret stealing without program re-execution.

In a separate line of work, speculation replay techniques have
also been demonstrated to enable secret inference from coarse-
grained side channels with a high degree of precision [57, 71, 75, 78,
79]. However, they have limited applicability in transient instruc-
tion replay. Collide+Power [53] reveals power distinguishability
when a memory line with different data patterns is loaded into
the cache. The attack leverages such observation and performs a
power side channel using differential analysis by exploiting specu-
lative loads. Notably, PowSpectre leverages replay of speculative
instruction execution without advancing instructions while [53]
exploits repetitive speculative loads in regular program constructs.
To the best of our knowledge, our work is the first to demonstrate
instruction-based power leakage in most recent RAPL using re-
play of speculative instruction execution. Among the most related

works, Platypus [57] uses zero-stepping for non-speculative side
channels against TEE. Concurrent to our investigation, the studies
in AEX-Notify [28] indicate that if an interrupt arrives during the
execution of ERESUME routine (i.e., zero-step), which is similar to
our observation. However, they did not investigate whether en-
clave instructions are still executed under transient execution in
zero-step. In addition, our paper revealed that zero-stepping cannot
be used for transient execution replay. MicroScope [75] uses page
fault for replaying timing channels, but only for enhancing non-
speculation leakage. In this study, we utilize TSX gadgets present in
victim applications [21, 38, 65] as an instruction replay technique
(TMPlayer) which is highly effective in the speculative domain.
Differently from prior work in Prime+Abort [32] and DrK [48] that
use TSX in the attacker space to observe timing information, TM-
Player utilizes the replay capabilities of TSX to replay instructions
for denoising purpose only.
Applicability of PowSpectre Due to the identification of the TSX
Asynchronous Abort (TAA) vulnerability shown in prior works [7,
32], Intel has deprecated TSX from modern processors along with
disabling TSX by default. However, the performance benefits of
transactional memory are non-negligible, and we envision that
Intel (and other vendors) are likely to roll out new variants of TAA-
secure transactional memory implementation in the near future.
Therefore, it is important to understand the holistic security of
transactional memory to ensure microarchitecture security for fu-
ture systems. Note that in processors with the deprecated TSX, this
feature can still be enabled at user discretion through boot flags (i.e.,
"tsx async abort=off tsx=on"). In TMPlayer, we repurpose the abort
handling of TSX as a replay primitive, which is different from the
TAA exploitation and is fundamental to the design of transactional
memory. PowSpectre is independent of TMPlayer and can manifest
(with a lower accuracy) even when TSX is disabled, using page
fault-based replay primitive instead of TMPlayer, as highlighted by
our evaluation in Section 7.2.

10 CONCLUSION
In this work, we present PowSpectre- a software-based (i.e., RAPL)
power side channel exfiltrating enclave secrets from the speculative
domain. This is the first work that highlights the secret leakage
capabilities of power side channel in transient execution. To denoise
the power measurements from RAPL interface, we investigate prior
instruction replay techniques and discover their shortcoming in
transient execution. We further design TMPlayer- an instruction
replay technique utilizing the Intel TSX which can overcome the
prior limitations. Equipped with TMPlayer, our evaluation shows
that PowSpectre can be used to exfiltrate enclave secretive data (e.g.,
crypto keys and private plaintext) in the speculative domain with
very high accuracy. Our further analysis shows the wide availability
of the power distinguishable gadgets for PowSpectre. Our work
highlights the importance of understanding advanced replay-based
side channels in SGX.

ACKNOWLEDGMENTS
This work is supported in part by U.S. National Science Foundation
under CNS-2008339 and CNS-2147217.

PowSpectre: Powering Up Speculation Attacks with TSX-based Replay ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] [n. d.]. 2020.2 IPU - Intel RAPL Interface Advisory. https://www.intel.com/cont

ent/www/us/en/security-center/advisory/intel-sa-00389.html
[2] [n. d.]. Introduction to Cache Allocation Technology in the Intel® Xeon® Pro-

cessor E5 v4 Family. https://www.intel.com/content/www/us/en/developer/arti
cles/technical/introduction-to-cache-allocation-technology.html

[3] [n. d.]. microcode-20201110 release: Intel INTEL-SA-00381. https://github.com
/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-
20201110/

[4] [n. d.]. microcode-20220510 release. https://github.com/intel/Intel-Linux-
Processor-Microcode-Data-Files/releases/tag/microcode-20220510/

[5] [n. d.]. PLATYPUS: With Great Power comes Great Leakage. https://platypusat
tack.com/

[6] [n. d.]. Running Average Power Limit Energy Reporting / CVE-2020-8694 , CVE-
2020-8695 / INTEL-SA-00389 . https://www.intel.com/content/www/us
/en/developer/articles/technical/sof tware-security-guidance/advisory-
guidance/running-average-power-limit-energy-reporting.html

[7] [n. d.]. TAA - TSX Asynchronous Abort. https://www.intel.com/content/www/
us/en/newsroom/news/ucsf-propel-medical-device-innovations.html

[8] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. On the power of
simple branch prediction analysis. In IEEE ISCA.

[9] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar
Pereida Garcia, and Nicola Tuveri. 2019. Port Contention for Fun and Profit. In
IEEE S&P.

[10] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuf-
frida. 2022. Branch history injection: On the effectiveness of hardware mitigations
against cross-privilege Spectre-v2 attacks. In USENIX Security.

[11] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Cohen. 2009. Pearson
correlation coefficient. In Springer Noise reduction in speech processing.

[12] Atri Bhattacharyya, Andrés Sánchez, Esmaeil M Koruyeh, Nael Abu-Ghazaleh,
Chengyu Song, and Mathias Payer. 2020. Specrop: Speculative exploitation of
ROP chains. In USENIX RAID.

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessan-
dro Sorniotti, Babak Falsafi, Mathias Payer, and Anil Kurmus. 2019. SMoTh-
erSpectre: Exploiting Speculative Execution through Port Contention. In ACM
CCS.

[14] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer, and Mengjia
Yan. 2020. Casa: End-to-end quantitative security analysis of randomly mapped
caches. In IEEE MICRO.

[15] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind, and
Srinivas Devadas. 2019. MI6: Secure Enclaves in a Speculative Out-of-Order
Processor. In IEEE MICRO.

[16] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz Lipp, Ma-
rina Minkin, Daniel Moghimi, Frank Piessens, Michael Schwarz, Berk Sunar, Jo
Van Bulck, and Yuval Yarom. 2019. Fallout: Leaking Data on Meltdown-resistant
CPUs. In ACM CCS.

[17] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin Von Berg,
Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and Daniel Gruss. 2019. A
systematic evaluation of transient execution attacks and defenses. In USENIX
Security.

[18] Sunjay Cauligi, Craig Disselkoen, Klaus v Gleissenthall, Dean Tullsen, Deian
Stefan, Tamara Rezk, and Gilles Barthe. 2020. Constant-time foundations for
the new spectre era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation.

[19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from SGX enclaves via specula-
tive execution. In IEEE EuroS&P.

[20] Jie Chen and Guru Venkataramani. 2014. Cc-hunter: Uncovering covert timing
channels on shared processor hardware. In IEEE MICRO.

[21] Sanchuan Chen, Xiaokuan Zhang, Michael K. Reiter, and Yinqian Zhang. 2017.
Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu.
In ACM ASIACCS.

[22] Md Hafizul Islam Chowdhuryy, Rickard Ewetz, Amro Awad, and Fan Yao. 2021.
R-SAW: New Side Channels Exploiting Read Asymmetry in MLC Phase Change
Memories. In IEEE SEED.

[23] Md Hafizul Islam Chowdhuryy, Rickard Ewetz, Amro Awad, and Fan Yao. 2023.
Understanding and Characterizing Side Channels Exploiting Phase-Change Mem-
ories. IEEE Micro (2023).

[24] Md Hafizul Islam Chowdhuryy, Hang Liu, and Fan Yao. 2020. BranchSpec: Infor-
mation Leakage Attacks Exploiting Speculative Branch Instruction Executions.
In IEEE ICCD.

[25] Md Hafizul Islam Chowdhuryy and Fan Yao. 2021. Leaking Secrets through
Modern Branch Predictor in the Speculative World. IEEE TC (2021).

[26] Md Hafizul Islam Chowdhuryy, Zhenkai Zhang, and Fan Yao. 2023. BeKnight:
Guarding Against Information Leakage in Speculatively Updated Branch Predic-
tors. In IEEE ICCAD.

[27] Yaakov Cohen, Kevin Sam Tharayil, Arie Haenel, Daniel Genkin, Angelos D
Keromytis, Yossi Oren, and Yuval Yarom. 2022. HammerScope: Observing DRAM
Power Consumption Using Rowhammer. ACM CCS (2022).

[28] Scott Constable, Jo Van Bulck, Xiang Cheng, Yuan Xiao, Cedric Xing, Ilya Alexan-
drovich, Taesoo Kim, Frank Piessens, Mona Vij, and Mark Silberstein. 2023. AEX-
Notify: Thwarting Precise Single-Stepping Attacks through Interrupt Awareness
for Intel SGX Enclaves. In USENIX Security 23.

[29] Intel Corporation. [n. d.]. Intel® Software Guard Extensions SSL. https:
//github.com/intel/intel-sgx-ssl

[30] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR Cryptol.
ePrint Arch. (2016).

[31] Jinhua Cui, Jason Zhijingcheng Yu, Shweta Shinde, Prateek Saxena, and Zhiping
Cai. 2021. SmashEx: Smashing SGX Enclaves Using Exceptions. In ACM CCS.

[32] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
Prime+Abort: A Timer-FreeHigh-Precision L3 Cache Attack using Intel TSX.
In USENIX Security.

[33] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. 2016. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In IEEE MICRO.

[34] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. Branchscope: A new side-channel attack on directional branch
predictor. In ACM ASPLOS.

[35] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš Doroslovački, and Guru
Venkataramani. 2018. A noise-resilient detection method against advanced cache
timing channel attack. In IEEE ACSSC.

[36] GPG. 2013. Mitigate a flush+reload cache attack on RSA secret exponents. (2013).
https://github.com/gpg/libgcrypt/commit/e2202ff2b

[37] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
leak-aside buffer: Defeating cache side-channel protections with TLB attacks. In
USENIX Security.

[38] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache Side-Channel Protection using
Hardware Transactional Memory. In USENIX Security.

[39] Michael Karl Gschwind, Valentina Salapura, and Chung-Lung K Shum. 2018.
Accurate tracking of transactional read and write sets with speculation. US
Patent 10,055,230.

[40] Michael K Gschwind, Valentina Salapura, and Chung-Lung K Shum. 2020. Read
and write sets for ranges of instructions of transactions.

[41] Jawad Haj-Yahya, Lois Orosa, Jeremie S Kim, Juan Gómez Luna, A Giray Yağlıkçı,
Mohammed Alser, Ivan Puddu, and Onur Mutlu. 2021. IChannels: Exploiting Cur-
rent Management Mechanisms to Create Covert Channels in Modern Processors.
In IEEE ISCA.

[42] Yi Han, Matthew Chan, Zahra Aref, Nils Ole Tippenhauer, and Saman Zonouz.
2022. Hiding in Plain Sight? On the Efficacy of Power Side Channel-Based Control
Flow Monitoring. In USENIX Security.

[43] Zhou Hongwei, Ke Zhipeng, Zhang Yuchen, Wu Dangyang, and Yuan Jinhui.
2021. TSGX: Defeating SGX Side Channel Attack with Support of TPM. In IEEE
ACCTCS.

[44] Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath,
and Mohit Tiwari. 2015. Understanding contention-based channels and using
them for defense. In IEEE HPCA.

[45] Intel. 2018. Deep Dive: Indirect Branch Predictor Barrier. https://software.i
ntel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-
predictor-barrier

[46] Intel. 2018. Deep Dive: Indirect Branch Restricted Speculation. https:
//software.intel.com/security-software-guidance/insights/deep-dive-indirect-
branch-restricted-speculation

[47] Intel. 2018. Deep Dive: Single Thread Indirect Branch Predictors. https:
//software.intel.com/security-software-guidance/deep-dives/deep-dive-single-
thread-indirect-branch-predictors

[48] Yeongjin Jang, Sangho Lee, and Taesoo Kim. 2016. Breaking kernel address space
layout randomization with intel tsx. In ACM CCS.

[49] S Karen Khatamifard, Longfei Wang, Amitabh Das, Selcuk Kose, and Ulya R
Karpuzcu. 2019. Powert channels: A novel class of covert communicationexploit-
ing power management vulnerabilities. In IEEE HPCA.

[50] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas Devadas, and
Joel Emer. 2018. DAWG: A defense against cache timing attacks in speculative
execution processors. In IEEE MICRO.

[51] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas,
Mike Hamburg, Moritz Lipp, StefanMangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. 2019. Spectre attacks: Exploiting speculative execution. In IEEE
S&P.

[52] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Springer Annual international cryptology conference.

[53] Andreas Kogler, Jonas Juffinger, Lukas Giner, Lukas Gerlach, Martin Schwarzl,
Michael Schwarz, Daniel Gruss, and Stefan Mangard. 2023. Collide+ Power:
Leaking Inaccessible Data with Software-based Power Side Channels. In USENIX
Security.

https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00389.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-cache-allocation-technology.html
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-20201110/
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-20201110/
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-20201110/
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-20220510/
https://github.com/intel/Intel-Linux-Processor-Microcode-Data-Files/releases/tag/microcode-20220510/
https://platypusattack.com/
https://platypusattack.com/
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/running-average-power-limit-energy-reporting.html
https://www.intel.com/content/www/us/en/newsroom/news/ucsf-propel-medical-device-innovations.html
https://www.intel.com/content/www/us/en/newsroom/news/ucsf-propel-medical-device-innovations.html
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://github.com/gpg/libgcrypt/commit/e2202ff2b
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-indirect-branch-predictor-barrier
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/insights/deep-dive-indirect-branch-restricted-speculation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-single-thread-indirect-branch-predictors
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-single-thread-indirect-branch-predictors

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Chowdhuryy et al.

[54] Vamsee Reddy Kommareddy, Baogang Zhang, Fan Yao, Rickard Ewetz, and Amro
Awad. 2019. Are Crossbar Memories Secure? New Security Vulnerabilities in
Crossbar Memories. In IEEE CAL.

[55] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. 2017. Inferring fine-grained control flow inside SGX enclaves with
branch shadowing. In USENIX Security.

[56] Moritz Lipp, Daniel Gruss, and Michael Schwarz. 2022. Amd prefetch attacks
through power and time. In USENIX Security.

[57] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based Power
Side-Channel Attacks on x86. In IEEE S&P.

[58] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, et al. 2018.
Meltdown: Reading kernel memory from user space. In USENIX Security.

[59] Chen Liu, Abhishek Chakraborty, Nikhil Chawla, and Neer Roggel. 2022. Fre-
quency throttling side-channel attack. In ACM CCS.

[60] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser,
and Ruby B Lee. 2016. Catalyst: Defeating last-level cache side channel attacks
in cloud computing. In IEEE HPCA.

[61] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In IEEE S&P.

[62] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. Timewarp: Re-
thinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In IEEE ISCA.

[63] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. Cachezoom:
How SGX amplifies the power of cache attacks. In Springer CHES.

[64] OpenSSL. [n. d.]. OpenSSL 1.1.0 Series Release Notes. https://www.openssl.org/
news/openssl-1.1.0-notes.html

[65] Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020. Autarky: Closing
controlled channels with self-paging enclaves. In ACM EuroSys. 1–16.

[66] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-
measures: the case of AES. In Springer CT-RSA.

[67] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan
Mangard. 2016. DRAMA: Exploiting DRAM addressing for Cross-CPU attacks.
In USENIX Security.

[68] Ivan Puddu, Moritz Schneider, Miro Haller, and Srdjan Čapkun. 2021. Frontal
Attack: Leaking Control-Flow in SGX via the CPU Frontend. In USENIX Security.

[69] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan, Dean M
Tullsen, and Ashish Venkat. 2021. I see dead `ops: Leaking secrets via Intel/AMD
micro-op caches. In IEEE ISCA.

[70] Gururaj Saileshwar and Moinuddin K Qureshi. 2019. CleanupSpec: An ’Undo’
Approach to Safe Speculation. In IEEE MICRO.

[71] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian Steck-
lina, Thomas Prescher, and Daniel Gruss. 2019. ZombieLoad: Cross-Privilege-
Boundary Data Sampling. In ACM CCS.

[72] Nader Sehatbakhsh, Baki Berkay Yilmaz, Alenka Zajic, and Milos Prvulovic.
2020. A new side-channel vulnerability on modern computers by exploiting
electromagnetic emanations from the power management unit. In IEEE HPCA.

[73] Madura A Shelton, Niels Samwel, Lejla Batina, Francesco Regazzoni, Markus
Wagner, and Yuval Yarom. 2019. Rosita: Towards automatic elimination of power-
analysis leakage in ciphers. arXiv preprint arXiv:1912.05183 (2019).

[74] Mert Side, Fan Yao, and Zhenkai Zhang. 2022. Lockeddown: Exploiting contention
on host-gpu pcie bus for fun and profit. In IEEE EuroS&P.

[75] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery, Josep
Torrellas, and Christopher W Fletcher. 2019. Microscope: Enabling microarchi-
tectural replay attacks. In IEEE ISCA.

[76] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Ponomarev, and Oğuz Er-
gin. 2022. Composable Cachelets: Protecting Enclaves from Cache Side-Channel
Attacks. In USENIX Security.

[77] Paul Turner. 2018. Retpoline: a software construct for preventing branch-target-
injection. https://support.google.com/faqs/answer/7625886

[78] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the keys to the intel SGX kingdom with transient
out-of-order execution. In USENIX Security.

[79] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In ACM SsyTEX.

[80] Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2018. Nemesis: Studying Mi-
croarchitectural Timing Leaks in Rudimentary CPU Interrupt Logic. In ACM
CCS.

[81] Stephan van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi
Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2019. RIDL:
Rogue In-Flight Data Load. In IEEE S&P.

[82] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In IEEE
S&P.

[83] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng Wang,
Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. 2017. Leaky Cauldron
on the Dark Land: Understanding Memory Side-Channel Hazards in SGX. In
ACM CCS.

[84] Yingchen Wang, Riccardo Paccagnella, Elizabeth Tang He, Hovav Shacham,
Christopher W Fletcher, and David Kohlbrenner. 2022. Hertzbleed: Turning
Power Side-Channel Attacks Into Remote Timing Attacks on x86. In USENIX
Security.

[85] Yingchen Wang, Riccardo Paccagnella, Alan Wandke, Zhao Gang, Grant Garrett-
Grossman, Christopher W Fletcher, David Kohlbrenner, and Hovav Shacham.
2023. DVFS frequently leaks secrets: Hertzbleed attacks beyond SIKE, cryptogra-
phy, and CPU-only data. In IEEE S&P.

[86] Haocheng Xiao and Sam Ainsworth. 2023. Hacky racers: Exploiting instruction-
level parallelism to generate stealthy fine-grained timers. In ACM ASPLOS.

[87] Wenjie Xiong and Jakub Szefer. 2021. Survey of Transient Execution Attacks.
Comput. Surveys (2021).

[88] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christopher
Fletcher, and Josep Torrellas. 2018. InvisiSpec: Making speculative execution
invisible in the cache hierarchy. In IEEE MICRO.

[89] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. 2017. Se-
cure Hierarchy-Aware Cache Replacement Policy (SHARP): Defending Against
Cache-Based Side Channel Atacks. In IEEE ISCA.

[90] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher Fletcher, Roy
Campbell, and Josep Torrellas. 2019. Attack Directories, Not Caches: Side Channel
Attacks in a Non-Inclusive World. In IEEE S&P.

[91] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. 2018. Are coherence
protocol states vulnerable to information leakage?. In IEEE HPCA.

[92] Fan Yao, Miloš Doroslovački, and Guru Venkataramani. 2019. Covert timing
channels exploiting cache coherence hardware: Characterization and defense.
Springer IJPP (2019).

[93] Fan Yao, Hongyu Fang, Miloš Doroslovački, and Guru Venkataramani. 2019.
COTSknight: Practical defense against cache timing channel attacks using cache
monitoring and partitioning technologies. In IEEE HOST.

[94] Fan Yao, Guru Venkataramani, and Miloš Doroslovački. 2017. Covert timing
channels exploiting non-uniform memory access based architectures. In ACM
GLSVLSI.

[95] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security.

[96] Zihao Zhan, Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xenofon Koutsoukos.
2022. Graphics peeping unit: Exploiting em side-channel information of gpus to
eavesdrop on your neighbors. In IEEE S&P.

[97] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. 2021. Red Alert for Power
Leakage: Exploiting Intel RAPL-Induced Side Channels. In ACM CCS.

https://www.openssl.org/news/openssl-1.1.0-notes.html
https://www.openssl.org/news/openssl-1.1.0-notes.html
https://support.google.com/faqs/answer/7625886

	Abstract
	1 Introduction
	2 Background
	2.1 Hardware-based Side Channels
	2.2 Trusted Execution Environment
	2.3 Intel Transactional Memory Extension

	3 Threat model
	4 Understanding Existing Replay Mechanisms
	4.1 Timer Interrupt-based Replay
	4.2 Exception-based Replay using Page Faults

	5 Exploiting TSX for Instruction Replay
	5.1 TMPlayer-E- Cache Eviction-based Replay Agent
	5.2 TMPlayer-I - APIC Timer Interrupt-based Replay Agent

	6 Power Side Channel in Speculative Execution
	6.1 Overview of PowSpectre Framework

	7 Evaluation
	7.1 Evaluation of TMPlayer
	7.2 Evaluation of PowSpectre
	7.3 Case Studies with PowSpectre

	8 Discussions
	8.1 Mitigation

	9 Related Works
	10 Conclusion
	Acknowledgments
	References

