
Seeds of SEED: R-SAW: New Side Channels Exploiting Read
Asymmetry in MLC Phase Change Memories

Md Hafizul Islam Chowdhuryy†, Rickard Ewetz†, Amro Awad§, and Fan Yao†

†University of Central Florida §North Carolina State University
reyad@knights.ucf.edu, rickard.ewetz@ucf.edu, ajawad@ncsu.edu, fan.yao@ucf.edu

Abstract—Phase Change Memory (PCM) is a promising
contender for future main memory solutions. While many
architecture-level performance optimizations have been studied
for PCM, the security implications of these designs are not
well understood. This work demonstrates the first investigation
of information leakage threats in PCM-based main memories.
Notably, we find state-of-the-art read techniques leveraging access
latency asymmetry in Multi-level Cell (MLC) PCM introduce new
timing variations. To understand the severity of the vulnerability,
we present R-SAW, a novel side channel attack that aims to
exfiltrate secrets from a victim process via passively observing
execution timings that are correlated with secret-dependent PCM
accesses. We demonstrate the attack on a real-world crypto-
graphic algorithm–AES encryption in OpenSSL. Our evaluation
shows that R-SAW is able to completely recover the encryption
keys. Furthermore, our experiments reveal that R-SAW exhibits
superior noise resilience compared to the widely-studied cache-
based side channels. Our work highlights the importance of
understanding security in systems integrated with emerging
memory technologies and motivates the need to architect secure-
by-design PCM main memories in the future.

I. INTRODUCTION

The rapid advances in high performance and data-intensive
computing have significantly pushed the demand for efficient
and scalable memory systems. Non-volatile memories (NVMs)
that offer high density, superior power efficiency, and persis-
tent storage are increasingly regarded as the major building
blocks for future memory systems. PCM is highly promising
due to its maturity and DRAM-comparable performance [1]–
[3]. Since PCM cells have a wide resistance range, they can
be operated in MLC mode, which offers higher densities by
encoding multiple bits per cell. While demonstrating several
appealing advantages, PCM read latency in MLC mode can be
significantly higher than single-level cell (SLC) mode [4]. In
particular, the bitwise iterative sensing for MLC read opera-
tions leads to asymmetry of read latency among the bits. Since
read operations are in the critical path, techniques optimizing
read performance for PCM cells are widely studied [5]–[8].

Although performance optimization has been the driving
force for motivating new architecture designs, the burgeoning
of hardware and microarchitecture attacks [9]–[15] in recent
years show that performance-enhancing techniques without
careful considerations of security can potentially open new
venues for security breaches. Therefore, understanding secu-
rity properties of emerging hardware in the early design stage
and ensuring secure-by-design architecture is imperative. In
this work, we aim to answer the following question: Are
emerging PCM-based main memory systems vulnerable to
information leakage? We focus on investigating the potential

security vulnerabilities of performance-optimized access tech-
niques for MLC PCM main memories. Our key observation is
that existing widely-recognized PCM read techniques typically
leverage data striping mechanisms that decouple the access
to MLC bits with varying speed grades [5]–[7]. While these
techniques undoubtedly bring performance benefits, they can
potentially allow adversaries to exfiltrate secretive data by
exploiting PCM read latency timings.

This paper demonstrates the first study on side channel
threats in future systems equipped with PCM as main memory.
We perform a systematic characterization of PCM access
timings on the state-of-the-art inter-line striping scheme for
read performance optimization [5]. Our investigation reveals
that the read asymmetry allows highly visible time-varying
program executions (even under the same execution path)
due to distinctions in accessing fast and slow regions in
MLC PCM. Such a characteristic allows the adversary to
compromise a victim process’s secrets if they could be inferred
from PCM main memory accesses. We implement R-SAW, a
novel side channel attack that exfiltrates AES keys in OpenSSL
by correlating PCM memory access patterns with program
execution times. Our evaluation shows that R-SAW can recover
entire keys with 98.5% accuracy at runtime. While prior works
have shown recovery of crypto keys through passive side
channels via caches (i.e., [10], [16]), our results reveal that
R-SAW exhibits considerably higher noise resilience where it
manages to recover 78% of the key bytes under an extremely
noisy environment where the prior cache-based side channel
fails. Our work on PCM-based side channel highlights the new
source of leakage in emerging memory technologies. Findings
in this paper can provide computer architects with new insights
of information security for future memory systems. In sum-
mary, the major contributions of this paper are:

• We make the first investigation of side channel vulnerabil-
ities in MLC PCM originating from the read asymmetry
due to architectural-level performance optimizations.

• We present R-SAW, a novel side channel attack that
can completely exfiltrate AES keys by exploiting timing
variances due to read asymmetry in MLC PCM.

• We perform a quantitative analysis of the impact of
system noises on R-SAW. Our results show that R-SAW
exhibits superior noise-resilience.

• We discuss several potential defensive techniques to mit-
igate PCM-based side channels. Our work highlights the
importance of designing side channel resistant MLC PCM
for future memory systems.

…

…

…

… … …

Word
line

Word
line

Word
line

Bit line Bit line Bit line

(a) PCM cell array

MSB read

reference resistance

LSB read
time

(b) PCM read operation

Fig. 1: Illustration of PCM array and MLC sensing technique.

II. BACKGROUND

Basics of Multi-level Cell PCM. PCM takes advantage of the
phase change property of Chalcogenide Alloy (e.g., GST) that
switches between a high resistance amorphous state and a low
resistance crystalline state. PCM cells are typically organized
as memory arrays that are accessible through word lines and
bit lines (Figure 1a). As the resistance level in the amorphous
state is several orders of magnitude higher than the crystalline
state, the resistance range can be safely divided into several
non-overlapping bands where multiple bits can be encoded
in a single PCM memory cell (i.e., MLC mode) [4], [17].
Figure 1b shows the mapping of resistive states to bit symbols
in 2-bit MLC cells. While MLC mode offers higher capacity, it
inevitably complicates the read sensing operation. Specifically,
reading bits in a PCM cell involves iterative sensing. In each
iteration, the logic compares the resistance with a reference
value to derive one bit at a time (i.e., from MSB to LSB)
as shown in Figure 1b. We assume a 2-bit MLC for main
discussion in this paper. Note that the same principle also
applies to higher-density MLC PCM.
Performance-oriented PCM Read Schemes. Due to the
iterative sensing procedure, reading the LSBs is about 2×
slower than the MSBs. In conventional data mapping scheme
where consecutive bits in a memory line are mapped to
consecutive bits in MLC cells, the read latency is determined
by LSB sensing, which could considerably degrade the overall
performance compared to systems with SLC-based PCM.
To retain a reasonable read performance, it is necessary to
expose the read asymmetry to architecture level and decouple
the fast MSB accesses from the slow LSB accesses. In fact,
state-of-the-art read techniques generally adopt bit striping
schemes that map certain memory data regions (e.g., a memory
line) exclusively to MSBs and others to LSBs in multi-level
cells, effectively accelerating reads for MSB-mapped regions
without deteriorating read latency for LSB-mapped ones. Prior
studies have prototyped such performance-oriented read tech-
niques at various striping granularities including intra-line [7],
inter-line [5] and inter-page striping [6]. Figure 2 illustrates the
representative design where consecutive data lines are mapped
to MSBs and LSBs alternatively such that reading of odd lines
benefits from much shorter latency than even lines [5].
Microarchitecture Timing Channel Attacks. Microarchitec-
ture timing channel attack is a form of information leakage

MSB

LSB

…b0

b1

b2 b4 b6 b8 b10

b3 b5 b7 b9 b11

b510

b511

b508

b509

Non-optimized PCM read

…b0 b1 b2 b3 b4 b5 b511

b511

b510

b510

Optimized PCM read - inter-line striping

b1b0 b3b2 b5b4

cache line

cache line 0

cache line 1

Fig. 2: PCM-optimized bit organization.

attacks where a spy exfiltrates secretive information from a
victim through observing or modulating the hardware access
timings [9], [13], [18], [19]. These attacks are particularly
worrisome as they can evade existing system-level defenses
and do not leave any physical traces after exploitation. The
root cause of microarchitectural timing-based leakage is the
variations of access latencies in underlying hardware that
create measurable slow or fast executions either directly by
the spy [13] or indirectly from the victim [16]. Note that
existing works have unveiled timing channel attacks targeting
many performance-oriented microarchitecture designs built in
processors over the years (e.g., caching and speculation).

III. THREAT MODEL

We focus on side channel attacks on systems equipped with
MLC PCM as main memories. The victim process runs ser-
vices that operate on certain secrets on the targeted machine.
We assume the spy either sits remotely or runs as a non-
privileged process co-located with the victim. Similar to prior
passive side channels on caches [16], [20], [21], we assume
the spy passively monitors externally observable information
non-intrusively and attempts to decipher the victim’s secrets
through correlating the secret values with timing observations.
The attacker can also perform certain profiling on a local
machine with a similar setup to the target machine.

IV. MLC PCM READ: A NEW SOURCE OF LEAKAGE?

In this section, we will investigate whether these read-
enhancement schemes could expose new timing source that
can potentially lead to information leakage.

Hardware Configurations
Processor Quad-core x86 CPU, Out-of-order execution
L1 I/D-Cache Private, 32KB, 2-way, 1-cycle hit
L2 Cache Private, 4MB, 16-way, 10-cycle hit
DRAM Cache Shared, 32MB, 16-way, 50-cycle hit
Mem. Controller 64 RD & WT queue, FR-FCFS scheduling, open-row policy

PCM Memory 8GB, single channel, 2 ranks/channel (Local)
16GB, dual channel, 2 ranks/channel (Target)

PCM Timing 2-bit MLC, MSB read: 28ns, LSB read: 48ns [1], [5]

TABLE I: Architecture configurations.

A. MLC PCM System Modeling

We build a comprehensive architecture model for PCM-
based systems [1] that integrates the state-of-the-art MLC
PCM read mechanism using inter-line striping among bits in
MLC cell [5], [22]. This is a highly efficient technique as it can
effectively harness the read asymmetry for performance gain

2

0 20 40 60 80 100
Reads to LSB Line (%)

3138

3140

3142

3144

Ex
ec

ut
io

n
Ti

m
e

(T
ho

us
an

d
Cy

cle
s)

Fig. 3: Program execution time as the percentage of LSB line
reads changes.

with low hardware cost. Under such a scheme, the memory
controller maps consecutive memory blocks to MSBs and
LSBs in an alternating manner (as shown in Figure 2). As
such, odd lines are allocated with MSBs (MSB lines), and
even lines are located in LSBs (or vice versa). The memory
controller’s read service time to odd lines only considers the
timing for one iteration sensing while even lines take two
iterations. We use gem5, a cycle-level simulator, to model
an x86 based system with MLC PCM. Memory parameters
are derived from existing studies [5]. The detailed architecture
configuration is listed in Table I.

B. Impact of PCM Access Patterns on Execution Time

Since MSB and LSB lines have different read latencies, for a
program that issues a certain number of memory read requests,
its execution time may have a strong dependency on the MLC
PCM access pattern–the breakdown of MSB and LSB lines
loaded. Specifically, the program execution time shall increase
as more memory reads fall in the LSB lines. To characterize
the impact of PCM access patterns on program execution, we
develop and run a microbenchmark that reads from arbitrary
memory locations for a pre-determined number of times. We
vary the percentage of LSB (or MSB) lines accessed and
measure the corresponding execution times. Figure 3 shows the
average execution latency for different PCM access patterns.
As we can see, while there are occasional local small spikes
on the execution time samples, the program execution time
exhibits a clear linear relationship with the reads to LSB
lines. Based on this result, we make the key observation that
differentiation in PCM access patterns can induce externally
observable slow and fast executions. We note that such timing
variations do not exist on non-optimized MLC PCM main
memories where memory array access latency is fixed.

C. Side Channel Attacks on MLC PCM

We note that there is potential information leakage if a
victim process’s PCM memory access patterns depend on
secretive values. We present a high-level attack framework
targeting MLC in Figure 4. Specifically, a spy process can
interact with a benign victim process by sending requests
through software interfaces 1 . The victim services the re-
quests based on certain secrets. Depending on the value of the
secrets, the victim may exhibit different PCM access patterns,
such as x1 (MSB) and x2 (LSB) in 2 vs. x3 (LSB) and
x4 (LSB) in 3 . After the victim’s operation is completed,
it sends back the response to the spy 4 . The spy not only

Secret dependent
PCM accesses

req.

(resp., timing)

timing analysis

inferred secrets

Fig. 4: Side Channel Attack Framework on MLC PCM.

7312 7344 7376 7408 7440
Encryption Latency (Cycles)

49.0

49.5

50.0

50.5

51.0

Re
ad

s t
o

LS
B

Lin
e

(%
)

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Distribution of AES encryption latency over PCM
access pattern.

receives the victim’s response but also measures the latency of
the victim’s execution. The spy then performs timing analysis
with the attempt to infer secrets of the victim process 5 .

V. AES SIDE CHANNELS THROUGH MLC PCM

In this section, we demonstrate a novel information leakage
attack–R-SAW, that exfiltrates crypto keys via exploiting PCM-
based timing channels in AES encryption.

The AES software implementation typically takes advan-
tage of pre-computed values to replace computation with
table lookups. We target the AES-128 implementation in
OpenSSL [23] that uses 5 T-tables for encrypting 16-byte data
block. AES-128 uses one 128-bit encryption key and performs
10 rounds of transformation. The first 4 tables (e.g., T0, T1, T2,
and T3) are used in the first 9 rounds where the last round only
accesses the 5th table T4. Each round involves 16 memory
accesses (i.e., table lookups) whose indices partially depend
on the prior round keys. We make the same assumption as
prior attacks [10], [21] that the memory blocks containing T-
tables are not cached on chip prior to each encryption run.

Since the total number of table lookup in AES encryption
is fixed, we expect that the overall encryption latency also
exhibits a strong relation with the percentage of LSB lines.
To validate this assumption, we run one million random AES
encryptions and collect the execution times, as well as the
number of LSB/MSB lines read from the T-tables. Figure 5
shows the distributions of encryption latencies for every LSB
line percentage. We can see that despite a narrow range of
LSB line percentage values (0.49 to 0.51), its linearity relation
with the execution time is still observed. As AES table access
addresses are dependent on the round keys, we hypothesize

3

49.8

50.0

50.2
Re

ad
s t

o
LS

B
Lin

e
(%

)

(0, 47)

0 50 100 150 200 250
Ciphertext Byte Value

49.8

50.0

50.2

(0, 16)

(a) Memory-pattern vector for k100 = 47 (top) and k100 = 16 (bottom)

0 50 100 150 200 250
Ciphertext Byte Value

7250

7350

7450

En
cr

yp
tio

n
La

t.
(C

yc
le

s)

(0, 16)

(b) Encryption-timing vector with k100 = 16

Fig. 6: Attack vector for (a) M(0, 47) and M(0, 16) respec-
tively and (b) T (0, 16).

that there could be a deterministic PCM access pattern for
a particular value of a key byte when encrypting plaintexts
in AES. In this case, then it is possible for an attacker to
exfiltrate individual key values by performing a correlation
analysis between a guessed key’s PCM access patterns and the
victim’s execution times. R-SAW is designed to target the last
round key, which, if compromised, could lead to exfiltration
of all keys. R-SAW incorporates the following attack steps:

PCM Access Pattern Profiling on AES. In the profiling
phase, the attacker aims to build memory-pattern vectors
(MPVs) that are used later to infer individual key bytes in
the victim. To do so, the attacker first instruments the AES
program to identify MSB/LSB line accesses (i.e., odd/even
blocks) so that the PCM access traces could be generated. The
attacker then performs a sufficient number of AES encryptions
on a local machine. Each encryption uses a randomly gener-
ated plaintext and a user key (that determines all round keys).
For each run, a sample point S = (C,K10, p) is recorded,
where C is the 16-byte ciphertext, K10 is the last round
key (random) and p is the percentage of LSB lines read in
this execution. We then organize the sample points based on
every unique value combination of k10i and Ci for each i.
Specifically, for every possible value of the ith key byte, we
get all the sample points whose K10

i = u and Ci = w (u and
w ∈ [0, 255]) as a group S(i, u, w). S(i, u, w) incorporates
information about the PCM access pattern under specific
values of the ith key byte and the ith ciphertext byte. We
compute the average percentage of LSB lines among all the
sample points in S(i, u, w) as P

w

(i,u) and define the memory-
pattern vector for the ith byte as the following:

M(i, u) = {P 0

(i,u), P
1

(i,u), ..., P
255

(i,u)} (1)

Essentially, for the ith key byte, the memory-pattern vector
contains 256 elements, each representing the average LSB line
read percentage among encryption samples that have a unique
Ci (i.e., the w value). As a result, we will generate 256 MPV s
for each key byte. In total, 4096 vectors are computed for all

0 50 100 150 200 250
Possible value of K10

0

-0.4

0.0

0.4

0.8

Co
rre

la
tio

n K10
0 = 16

Fig. 7: Correlation between memory-pattern vectors and the
victim’s encryption-timing vector for K10

0 .

16 key bytes in the last round. These vectors are regarded as
the PCM access signature for each key instance. Note that the
profiling process only has to be done once as an offline step.
Victim’s Execution Time Monitoring. After the profiling
step, the attacker will start the online monitoring step where it
triggers AES encryptions from the victim process with random
plaintexts and measures the encryption timings. A sample
point in this stage can be denoted as S = (C, l) where C
is the ciphertext and l is the execution latency. The attacker
organizes the sample points similar to the profiling phase.
Particularly, for each of the ith byte in ciphertext, sample
points that share the common Ci (again denoted as w) are
grouped together as S(i,x, w) where x = K10

i is fixed but
unknown yet. Subsequently, the attacker calculates the average
latency among all sample points for each S(i,x, w) as L

w

(i,x).
The encryption-timing vector (ETV) is generated for each byte
of the victim’s last round key as follows:

T (i,x) = {L0

(i,x), L
1

(i,x), ..., L
255

(i,x)} (2)

Note that T (i,x) captures the statistical timing patterns cor-
responding to an unknown value of the ith key byte.
AES Key Recovery through Correlation Analysis. Now that
both the memory-pattern vectors (M(i, u)) and encryption-
timing vectors (T (i,x)) have been collected, the attacker can
attempt to infer the secret key values based on correlation anal-
ysis. The key motivation is thatM(i, u) carries information on
the PCM access pattern for key byte i with value u. Since PCM
access patterns (denoted using the percentage of LSB lines
reads) have a strong correlation with the encryption timings
(shown in Figure 5), ifM(i, u) is sufficiently distinct for each
value of u, we expect that there would be an outstandingly
higher correlation betweenM(i, u) and T (i,x), given x = u.
As a result, the ith key byte can be deciphered using the
following procedure:

K10
i = argmax

u
R(M(i, u), T (i,x)) (3)

R calculates the correlation between M and T . In other
words, the value of ith key byte is equal to u that leads to
the maximum correlation between the corresponding memory-
pattern vector and encryption-timing vector. Once all the final
round key bytes are obtained, the attacker can easily recover
the original user key [10]. It is worth noting that MPVs
are inherently dependent only on the program-level behavior
and implementation. Therefore, MPV traces will be the same
regardless of the configuration of local machines. As a result,
R-SAW does not require the same hardware setup between the
local machine and the remote machine hosting the victim.

4

0 50 100 150 200 250
Possible Value of Key Bytes

k0
10

k1
1
5
0

K0=16
K2=247

K3=7 K4=105
K5=236 K6= 51

K7=142K8=8K9=17 K10=250

K11=167K12=38

K13=127 K14=184K15=22

K1=219
0.3
0.0
0.3
0.6
0.9

Fig. 8: A complete recovery of the final round key. Each row denotes the correlation value distribution for one key byte.

VI. EVALUATION

A. Key Recovery Results with R-SAW

We evaluate the key recovery effectiveness on AES using
the methods described in Section V. In the profiling phase,
the number of encryptions has to be large enough so that
sufficient sample points are collected for every possible key
byte and ciphertext byte value combination. We empirically
find that running 30 Million AES encryptions with random
plaintext and user key is adequate. On our simulated platform,
this step takes less than 2 hours in total. Note that profiling is
only performed once offline. In the runtime monitoring phase,
the attacker initiates 128K AES encryptions in the victim to
generate the encryption-timing vector. We observe that the
encryptions needed on the victim’s side are significantly less
than the profiling phase as the victim uses only one fixed key.

Our profiling results show that for each key byte, the
memory-pattern vectors (M(i, u)) corresponding to its differ-
ent values are clearly distinguishable. Figure 6a presents the
memory-pattern vectors for K10

0 under two key byte values:
47 and 16 (i.e.,M(0, 47) andM(0, 16)). Figure 6b illustrates
the encryption-timing vector collected from the victim AES
program with K10

0 set to 16 (i.e., T (0, 16)). It can be seen
that the M(0, 16) vector indeed closely resembles T(0,16),
indicating a high correlation between these two vectors that
share the same key byte value. In the final key recovery step,
the attacker computes the Pearson correlation between the
encryption-timing vector and the memory-pattern vector under
a guessed key value. Figure 7 shows the correlation coefficient
between the MPV s and the target ETV for the first key byte
(i.e., K10

0). We can see that among the 256 MPV s, a point
clearly stands out with the highest correlation at key value
16 (i.e., when M(0, 16) is used). Therefore, the attacker can
correctly guess that K10

0 has value 16. Figure 8 presents the
correlation analysis for each of the victim’s 16 key bytes in
a grey-scale heat map. We observe that for each key byte,
an obvious dark point exists for each row (i.e., outstanding
correlation), indicating the correct key value. R-SAW is able
to completely reveal all the key bytes values for this key
instance. Finally, we have run 4000 iterations of R-SAW attack
where the victim’s AES program uses a different key for each
iteration. Our result shows that R-SAW can recover all keys
with 98.5% accuracy.

B. Characterizations of R-SAW Attack

In this section, we aim to characterize the effectiveness of
R-SAW by performing a comparative study with the state-of-
the-art passive timing channels on AES [10], [16]. Note that

25 50 75 100 125 150
of Samples Per Key (K)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

R-SAW attack
Cache-based attack

Fig. 9: Success rates with
the change of sample size.

0 20 40 60 80 100
Relative Noise Levels (%)

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
e

R-SAW attack
Cache-based attack

Fig. 10: Success rates with
the change of system noise.

we do not perform evaluations on other active side channels
exploits such as Prime+Probe [24] and Flush+Reload [18]
as these attacks require explicit perturbations to the victim’s
cache accesses, which is different from R-SAW. Particularly,
the work from Liu et al. [16] has revealed that in the last round
encryption, if two table lookups (ith and jth) to T4 map to
the same entry, it will hold true that Ci ⊕ Cj = K10

i ⊕K10
j .

The cache attack works by first assuming a particular XOR
value between two key bytes: K10

i ⊕K10
j , and then compute

the average latency among sample points for which Ci ⊕ Cj

equals to the assumed value. The correct K10
i ⊕K10

j is equal
to the assumed value whose corresponding average latency
is the shortest. We implement the cache-based attack in [16]
and compare its attack effectiveness with R-SAW. To perform
a quantitative analysis, we define the Success Rate (SR)
metric. For N iterations of attack (each with a different AES
key), SR for R-SAW is the average percentage of key bytes
correctly recovered; SR for cache-based attack is the average
percentage of XOR values accurately recovered.

Sensitivity to Sample Size. We first analyze SR by varying
the number of sample points. To do that, we generate 100
random keys and perform both attacks with these keys. We
change the number of samples per key from 25K to 140K.
Figure 9 illustrates the trend of SR as sample size changes.
We can see that for both attacks, SR increases as the sample
sizes increase. However, the gain in SR diminishes as the
sample size reaches 100K. Furthermore, for given sample size,
R-SAW consistently achieves a higher success rate compared
to cache-based attacks (up to 20%). We expect that the higher
attack efficiency in terms of sample size is because the timing
variations due to PCM access pattern is more prominent than
the cache hit patterns.

Resiliency to System Noise. In realistic settings, there might
be noises from background processes. Noises can obfuscate
timing measurements, which potentially undermines the ef-

5

fectiveness of timing channels. To understand the impact of
noise, we run a multi-threaded noise injection process on
the target AES system that performs randomized memory
loads. The highest level of noise corresponds to accessing
caches/memories in a non-stop manner. We then scale the
noise levels by slowing down the memory access frequency
accordingly in each thread. Under each noise level, we gener-
ate 100 AES keys, and 128K sample points are collected for
each attack. Figure 10 shows the success rates of R-SAW and
cache-based attacks with different noise levels. We can see
that the cache-based attack is extremely sensitive to system
noise. In particular, a sharp decrease in SR is observed when
the noise level is above 40%. In contrast, R-SAW exhibits
superior resilience: It can still successfully recover 81% of the
key bytes at the highest noise level where the effectiveness of
the cache attack is degraded to random guess. This is because
the cache-based attack relies on cache hits for its statistical
measurement. With the spike in system noises, memory lines
brought to the cache by one access (e.g., ith table lookup)
may be quickly evicted by the background activities. As a
result, the subsequent jth table lookup to the same block may
experience cache miss instead of hit, leading to obfuscated
timing observation. Differently, R-SAW’s exploitation depends
on PCM memory access timing. Even with more main memory
accesses as a result of memory access contention, the memory-
access pattern (i.e., percentage of LSB line) can still be quite
stable as it is dependent on the key value. As a result, R-SAW
represents a new timing source independent of prior exploits.
R-SAW is highly resilient, and thus it may pose an even higher
risk in future systems.

VII. DISCUSSION

A. Applicability of R-SAW on Different MLC PCM Systems

While our main study focuses on inter-line data striping
scheme in MLC PCM, we note that the new side channel
threat can be potentially manifested in other implementations.
Specifically, with intra-line striping [7], read asymmetry is
exposed among sub-blocks of a memory line. This may
enable finer-grained timing observations, making the potential
exploits even more devastating. On the other hand, prior
work has shown certain applications involve secret-dependent
page-level memory activities [12], these applications can be
vulnerable to MLC PCM employed with inter-page striping.

B. Mitigations

We discuss two mitigation methodologies for R-SAW and
the corresponding challenges with these mechanisms.
Randomized PCM Data Mapping. One plausible mitigation
technique is to integrate architectural support in memory
controller that randomizes memory line mapping. Particularly,
instead of mapping odd/even lines to MSBs and LSBs deter-
ministically, two logically consecutive memory lines can be
remapped randomly to either MSB or LSB lines on the same
page using permutation seed generated at runtime. This way,
the memory-access pattern is randomized and its correlation
with the execution timing would be obfuscated. However, such

approach could incur extra storage overhead for permutation
metadata maintenance. Also, the permutation seed might need
to be changed frequently to secure long-lived pages [25].
Software Hardening. Existing techniques have studied soft-
ware rewriting (e.g., removing branches in security sensitive
path) to ensure information security against microarchitecture
attacks [26], [27]. We note that similar software hardening
techniques could be utilized to mitigate R-SAW. Specifically,
security-sensitive software can map memory addresses tainted
with secretive information to the regions with the same
speed grade to avoid secret-dependent PCM access timings.
However, implementing PCM security-aware data mapping in
software can require non-trivial modifications, which could
pose considerable burden on program developers. Another
challenge with this approach is that such secure implemen-
tation is only specific to certain MLC PCM systems, which
may not be generic enough to offer protection on systems
employed with different PCM access techniques.

VIII. RELATED WORK

Recent studies have shown successful exfiltration of crypto-
graphic keys (e.g., AES and RSA) through many microarchi-
tectural components such as caches [10], [13], [16], and branch
predictors [14], [28]. Existing protection mechanisms against
cache timing channel include randomization (e.g., randomized
cache indexing) [25] and resource partitioning [29]–[31]. We
note that our work demonstrates a new side channel threat
and those existing defense schemes do not mitigate R-SAW.
Another generic approach for alleviating side channel is to
obfuscate the precision of timing observation through noise
injections [32]. However, our study in Section VI has shown
that R-SAW exhibits much higher resilience to system-level
noises. Therefore, while this approach may be effective for
caches, the desired noise level to obscure R-SAW could be
too high to be tolerated in systems for regular operations.
Besides architectural-level defenses, existing works have pro-
posed secure crypto algorithms using constant-time imple-
mentation [33]. We note that R-SAW can also potentially be
applied to non-crypto applications in a much broader spectrum.

IX. CONCLUSION

In this paper, we investigate the information leakage vul-
nerabilities in PCM-integrated systems. Our work reveals
that state-of-the-art PCM read techniques that leverage read
asymmetry in Multi-level cell open new side channel attack
vectors. We present R-SAW, a novel side channel that can fully
recover AES encryption keys based on MLC PCM access-
dependent timings. The evaluation result shows that R-SAW
exhibit much higher attack efficiency, as well as superior
noise resilience, compared to cache-based attacks. Our work
motivates the need to architect secure-by-design MLC PCM
main memories for future systems.

ACKNOWLEDGMENTS

This work is supported in part by U.S. National Science
Foundation under CNS-2008339 and CNS-1908471.

6

REFERENCES

[1] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in IEEE/ACM ISCA, 2009, pp.
2–13.

[2] M. K. Qureshi, M. M. Franceschini, L. A. Lastras-Montaño, and
J. P. Karidis, “Morphable memory system: A robust architecture for
exploiting multi-level phase change memories,” in IEEE/ACM ISCA,
2010, pp. 153–162.

[3] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung et al., “Phase-
change random access memory: A scalable technology,” IBM Journal
of Research and Development, vol. 52, no. 4.5, pp. 465–479, 2008.

[4] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani,
E. Buda, F. Pellizzer, D. Chow, A. Cabrini, G. M. A. Calvi et al., “A
multi-level-cell bipolar-selected phase-change memory,” in IEEE ISSCC,
2008, pp. 428–625.

[5] M. Hoseinzadeh, M. Arjomand, and H. Sarbazi-Azad, “Reducing access
latency of mlc pcms through line striping,” in IEEE/ACM ISCA, 2014,
pp. 277–288.

[6] H. Yoon, J. Meza, N. Muralimanohar, N. P. Jouppi, and O. Mutlu,
“Efficient data mapping and buffering techniques for multilevel cell
phase-change memories,” ACM TACO, vol. 11, no. 4, pp. 1–25, 2014.

[7] M. Arjomand, A. Jadidi, M. T. Kandemir, A. Sivasubramaniam, and
C. R. Das, “HL-PCM: MLC PCM main memory with accelerated read,”
IEEE TPDS, vol. 28, no. 11, pp. 3188–3200, 2017.

[8] M. Jalili and H. Sarbazi-Azad, “Express read in MLC phase change
memories,” ACM TODAES, vol. 23, no. 3, pp. 1–24, 2018.

[9] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in IEEE S&P, 2019, pp. 1–19.

[10] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in Springer CHES, 2006, pp. 201–215.

[11] Z. Wang and R. B. Lee, “Covert and side channels due to processor
architecture,” in IEEE ACSAC, 2006, pp. 473–482.

[12] Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Determin-
istic side channels for untrusted operating systems,” in IEEE S&P, 2015,
pp. 640–656.

[13] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: the case of AES,” in Springer CT-RSA, 2006, pp. 1–20.

[14] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev, “Branch-
Scope: A new side-channel attack on directional branch predictor,” in
ACM ASPLOS, 2018, p. 693–707.

[15] V. R. Kommareddy, B. Zhang, F. Yao, R. Ewetz, and A. Awad, “Are
crossbar memories secure? new security vulnerabilities in crossbar
memories,” in IEEE CAL, 2019, pp. 174–177.

[16] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE MICRO,
2014, pp. 203–215.

[17] M. Jalili, M. Arjomand, and H. S. Azad, “A reliable 3D MLC PCM
architecture with resistance drift predictor,” in IEEE DSN, 2014, pp.
204–215.

[18] Y. Yarom and K. Falkner, “FLUSH+ RELOAD: a high resolution, low
noise, l3 cache side-channel attack,” in USENIX Security, 2014, pp.
719–732.

[19] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence pro-
tocol states vulnerable to information leakage?” in IEEE HPCA, 2018,
pp. 168–179.

[20] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.
[21] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing

attack on a gpu,” in IEEE HPCA, 2016, pp. 394–405.
[22] M. Asadinia and H. Sarbazi-Azad, “Inter-line level schemes for handling

hard errors in pcms,” in Elsevier Advances in Computers, 2020, vol. 118,
pp. 49–78.

[23] The OpenSSL Project, “OpenSSL: The open source toolkit for SSL/TLS
(v. 0.9.7),” 2006, www.openssl.org.

[24] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in IEEE S&P, 2015, pp. 605–622.

[25] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in IEEE MICRO, 2018, pp. 775–787.

[26] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner, “The program
counter security model: Automatic detection and removal of control-flow
side channel attacks,” in Springer IACR, 2005, pp. 156–168.

[27] B. Coppens, I. Verbauwhede, K. De Bosschere, and B. De Sutter,
“Practical mitigations for timing-based side-channel attacks on modern
x86 processors,” in IEEE S&P, 2009, pp. 45–60.

[28] M. H. I. Chowdhuryy, H. Liu, and F. Yao, “BranchSpec: Information
Leakage Attacks Exploiting Speculative Branch Instruction Executions,”
in IEEE ICCD, 2020.

[29] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A defense against cache timing attacks in speculative execution
processors,” in IEEE MICRO, 2018, pp. 974–987.

[30] F. Yao, H. Fang, M. Doroslovacki, and G. Venkataramani, “Cotsknight:
Practical defense against cache timing channel attacks using cache
monitoring and partitioning technologies,” in IEEE HOST, 2019, pp.
121–130.

[31] F. Yao, H. Fang, M. Doroslovački, and G. Venkataramani, “Leveraging
cache management hardware for practical defense against cache timing
channel attacks,” IEEE Micro, vol. 39, no. 4, pp. 8–16, 2019.

[32] H. Fang, S. S. Dayapule, F. Yao, M. Doroslovački, and G. Venkatara-
mani, “Prefetch-guard: Leveraging hardware prefetches to defend against
cache timing channels,” in IEEE HOST, 2018, pp. 187–190.

[33] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie, “System-
level non-interference for constant-time cryptography,” in ACM CCS,
2014, pp. 1267–1279.

7

www.openssl.org

	Introduction
	Background
	Threat Model
	MLC PCM Read: A New Source of Leakage?
	MLC PCM System Modeling
	Impact of PCM Access Patterns on Execution Time
	Side Channel Attacks on MLC PCM

	AES Side Channels through MLC PCM
	Evaluation
	Key Recovery Results with R-SAW
	Characterizations of R-SAW Attack

	Discussion
	Applicability of R-SAW on Different MLC PCM Systems
	Mitigations

	Related work
	Conclusion
	References

